East Asian Math. J. 16(2000), No. 2, pp. 205-214

SOME CHARACTERIZATIONS OF BEST APPROXIMATION ELEMENT FROM SUBSPACES IN LINEAR 2-NORMED SPACES

S. S. KIM AND S. S. DRAGOMIR

ABSTRACT. In this paper, we shall give new characterizations of best approximation element in linear 2-normed spaces in terms of bounded linear 2-functionals and 2-hyperplanes.

1. Introduction

Let X be a linear space of dimension greater than 1, and let $\|\cdot, \cdot\|$: $X \times X \to R$ be a function with the following conditions:

- (N_1) ||x,y|| = 0 if and only if x and y are linearly dependent,
- $(\mathbf{N}_2) ||x,y|| = ||y,x||,$
- (N₃) $||\alpha x, y|| = |\alpha|||x, y||$, where α is real,
- (N₄) $||x+y,z|| \le ||x,z|| + ||y,z||.$

 $\|\cdot,\cdot\|$ is called a 2-norm on X and $(X, \|\cdot,\cdot\|)$ a linear 2-normed space([6]).

Let A, C be a subspaces of X. A bilinear functional $f : A \times C \to R$ is called a *bounded linear 2-functional* if there is a real constant K > 0such that $|f(x,y)| \leq K ||x,y||$ for $x, y \in X([12])$.

For a bounded linear 2-functional we have

Received May 30, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 46A15, 51K05.

Key words and phrases: 2-norm derivative, best approximation, orthogonality, 2-hyperplane, proximinal, variational.

This research was supported by the Dongeui University Research Grants in 1999.

$$||f|| = \inf\{K : |f(x,y)| \le K ||x,y|| \text{ for all } x, y \in X\}.$$

Additional properties of bounded linear 2-functionals may be found in [4], [5], [9] and [12].

Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $V(x_1, x_2, ..., x_n)$ be a subspace of X generated by $x_1, x_2, ..., x_n$ in X. For all $x, y \in X$, define

$$\rho_{\pm}(x,z)(y) = \lim_{t \to 0^{\pm}} \frac{\|x + ty, z\|^2 - \|x, z\|^2}{2t}$$

for any real t and $z \in X \setminus V(x, y)$.

Theorem 1.1([1], [2]). We have some properties of ρ_{\pm} :

- (1) $\rho_{\pm}(\alpha x, z)(\beta y) = \alpha \beta \rho_{\pm}(x, z)(y)$ for $\alpha \beta \ge 0$.
- (2) $\rho_{\pm}(x,z)(\alpha x+y) = \alpha \rho_{\pm}(x,z)(x) + \rho_{\pm}(x,z)(y)$ for all $\alpha \in R$.
- (3) $\rho_{\pm}(x,z)(y+y') \leq (\rho_{\pm}(x,z)(x))^{1/2}(\rho_{\pm}(y,z)(y))^{1/2} = \rho_{\pm}(x,z)(y').$
- (4) $\rho_+(x,z)(-y) = \rho_+(-x,z)(y) = -\rho_-(x,z)(y).$
- (5) $\rho_+(x,z)(x) = \rho_-(x,z)(x) = ||x,z||^2$.
- (6) $(X, \|\cdot, \cdot\|)$ is smooth at $x_o \in X \setminus \{0\}$ if and only if $\rho_+(x, z)(y) = \rho_-(x, z)(y)$.
- (7) $x \perp_z (\alpha x + y)$ if and only if $\rho_-(x, z)(y) \le -\alpha ||x, z||^2 \le \rho_+(x, z)(y)$ where \perp_z is orthogonality([7]), that is, $x \perp_z y$ means $||x + ty, z|| \ge ||x, z||$ for all $t \in \mathbb{R}$.

Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space. For a subspace G of X, let [x, G] be the subspace of X generated by x and G, where $x \in X \setminus \overline{G}$. Then for $z \in X \setminus [x, G]$, an element $g_o \in G$ is called the *best* approximation element of x by G (with respect to z) if

$$\|x-g_o,z\|\leq \|x-g,z\|$$

for all $g \in G([10])$. The set of all elements of best approximation of x by G with respect to z is denoted by $P_{G,z}(x)$, that is,

$$P_{G,z}(x) = \{g_o \in G : ||x - g_o, z|| \le ||x - g, z||\}.$$

The following theorem gives a relationship between orthogonality and best approximation in linear 2-normed spaces.

THEOREM 1.2. ([4]) Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space, G a linear subspace of X, $x \in X \setminus \overline{G}$ and $z \in X \setminus [x, G]$. Then $g_o \in P_{G,z}(x)$ if and only if $(x - g_o) \perp_z G$.

In 1994 and 1990, I. Franić([4]) and S. Mabizela([9]) gave some characterizations of the best approximation in terms of bounded linear 2functions, respectively. Also, some results on approximation theory in linear 2-normed spaces have been obtained by S.S. Kim, Y.J. Cho and T.D. Narang([8]), S. Elumalai, Y.J. Cho and S.S. Kim([3]) and R. Ravi([11]).

In this paper, new characterizations of best approximation in linear 2-normed spaces is given in terms of bounded linear 2-functionals and 2-hyperplanes.

2. Characterizations of best approximation

Let f be a non-zero linear 2-functional on $X \times V(z)$. Then we define the 2-hyperplane H through the origin by

$$H = \{ x \in X | f(x, z) = 0 \}.$$

THEOREM 2.1. Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space, f a nonzero bounded linear 2-functional on $X \times V(z)$ and H a 2-hyperplane through the origin, $x_o \in X \setminus H, z \in X \setminus [x, H]$ and $g_o \in H$. Then the following statements are equivalent:

(1) $g_o \in P_{H,z}(x_o);$

(2) (a) For all
$$x \in X$$

$$\rho_{-}\left(\frac{f(x_{o}, z)(x_{o} - g_{o})}{\|x_{o} - g_{o}, z\|^{2}}, z\right)(x)$$

$$\leq f(x, z) \leq \rho_{+}\left(\frac{f(x_{o}, z)(x_{o} - g_{o})}{\|x_{o} - g_{o}, z\|^{2}}, z\right)(x), \text{ and}$$
(b) $\cdot \|f\| = \frac{|f(x_{o}, z)|}{\|x_{o} - g_{o}, z\|}.$
(2.1)

PROOF. (1) implies (2): Suppose that $g_o \in P_{H,z}(x_o)$. By Theorem 1.2, $(x_o - g_o) \perp_z H$. Let $w = x_o - g_o$ and $x \in X$. Then we have f(x,z)w - f(w,z)x belong to H and so $w \perp_z (f(x,z)w - f(w,z)x)$. By Theorem 1.1,

$$\rho_{-}(w,z)(f(x,z)w - f(w,z)x) \le 0 \le \rho_{+}(w,z)(f(x,z)w - f(w,z)x)$$

for all $x \in X$ and $z \in X \setminus [x, H]$. Since

$$\begin{aligned} \rho_{\pm}(w,z)(f(x,z)w-f(w,z)x) \\ &= f(x,z)\|w,z\|^2 + \rho_{\pm}(w,z)(-f(w,z)x) \end{aligned}$$

and $w \perp_z H$, if w is any non-zero element of X, then $f(w, z) \neq 0$. Now we will consider two cases: f(w, z) > 0 and f(w, z) < 0.

Case 1. Suppose that f(w, z) > 0. Then we have

$$0 \le f(x,z) \|w,z\|^2 + \rho_+(w,z)(-f(w,z)x)$$

= $f(x,z) \|w,z\|^2 - \rho_-(f(w,z)w,z)(x)$

and so

$$f(x,z) \ge \rho_{-}\left(\frac{f(w,z)w}{\|w,z\|^2},z\right)(x).$$

On the other hand, we have

$$0 \ge f(x,z) ||w,z||^2 + \rho_-(w,z)(-f(w,z)x)$$

= $f(x,z) ||w,z||^2 - \rho_+(f(w,z)w,z)(x)$

208

and so

$$f(x,z) \leq
ho_+ \left(rac{f(w,z)w}{\|w,z\|^2},z
ight)(x).$$

Therefore, it follows that

$$ho_{-}\left(rac{f(w,z)w}{\|w,z\|^2},z
ight)(x)\leq f(x,z)\leq
ho_{+}\left(rac{f(w,z)w}{\|w,z\|^2},z
ight)(x).$$

Case 2. Suppose that f(w,z) < 0. For any $x,y \in X$ and $z \in X \setminus V(x,y)$, –

$$\rho_{-}(x,z)(y) = -\rho_{+}(x,z)(-y) = -\rho_{+}(-x,z)(y)$$

 \mathbf{and}

$$\rho_{-}(-x,z)(y) = -\rho_{+}(-x,z)(-y) = -\rho_{+}(x,z)(y)$$

hold. Since f(w, z) < 0, we have

$$0 \le f(x, z) ||w, z||^2 + \rho_+(w, z)(-f(w, z)x)$$

= $f(x, z) ||w, z||^2 - \rho_-(f(w, z)w, z)(x)$

and so

$$f(x,z) \ge \rho_{-}\left(\frac{f(w,z)w}{\|w,z\|^2},z\right)(x).$$

Also, by the similar method we have

$$f(x,z) \le \rho_+ \left(\frac{f(w,z)w}{\|w,z\|^2}, z \right)(x).$$

Therefore,

$$\rho_{-}\left(rac{f(w,z)w}{\|w,z\|^2},z
ight)(x) \leq f(x,z) \leq
ho_{+}\left(rac{f(w,z)w}{\|w,z\|^2},z
ight)(x).$$

Since $g_o \in H$, $f(w, z) = f(x_o, z)$ and so we obtain (a).

Next, let
$$u = f(x_o, z)(x_o - g_o) / ||x_o - g_o, z||^2$$
. Then, by (a)
$$f(x, z) \le \rho_+(u, z)(x) \le ||x, z|| ||u, z||$$

and

$$f(x,z) \ge
ho_-(u,z)(x) = -
ho_+(u,z)(-x) \ge ||x,z|| ||u,z||.$$

Therefore, $-||u, z|| \le f(x, z)/||x, z|| \le ||u, z||$ and hence $||f|| \le ||u, z||$. On the other hand, we have

$$\|f\| \ge rac{f(u,z)}{\|u,z\|} \ge rac{
ho_-(u,z)(u)}{\|u,z\|} = \|u,z\|$$

and so we conclude that (b) holds.

(2) implies (1): From (a), for $x \in H$

$$\rho_{-}\left(\frac{f(x_{o},z)(x_{o}-g_{o})}{\|x_{o}-g_{o},z\|^{2}},z\right)(x) \leq 0 \leq \rho_{+}\left(\frac{f(x_{o},z)(x_{o}-g_{o})}{\|x_{o}-g_{o},z\|^{2}},z\right)(x).$$

Therefore, it follows that

$$\frac{f(x_o, z)(x_o - g_o)}{\|x_o - g_o, z\|^2} \bot_z H$$

and so since $f(x_o, z) \neq 0$, $(x_o - g_o) \perp_z H$. Therefore, by Theorem 1.2 we have $g_o \in P_{H,z}(x_o)$.

By Theorem 2.1, we obtain easily the following corollaries:

COROLLARY 2.2. Let $(X, (\cdot, \cdot | \cdot))$ be a 2-inner product space, f a non-zero bounded linear 2-functional on $X \times V(z)$, H a 2-hyperplane through the origin, $x_o \in X \setminus H$, and $z \in X \setminus [x, H]$. Then there exists $g_o \in H$ such that

$$f(x,z) = \left(x, \frac{f(x_o, z)(x_o - g_o)}{\|x_o - g_o, z\|^2} | z\right) \quad and \quad \|f\| = \frac{|f(x_o, z)|}{\|x_o - g_o, z\|}.$$

210

COROLLARY 2.3. Let $(X, \|\cdot, \cdot\|)$ be a smooth linear 2-normed space, f a non-zero bounded linear 2-functional on $X \times V(z)$, H a 2-hyperplane through the origin, $x_o \in X \setminus H, z \in X \setminus [x, H]$ and $g_o \in H$. Then the following statements are equivalent:

(1) $g_o \in P_{H,z}(x_o);$

(2)
$$f(x,z) = \rho_+ \left(\frac{f(x_o,z)(x_o - g_o)}{\|x_o - g_o,z\|^2}, z \right)(x)$$
 and $\|f\| = \frac{|f(x_o,z)|}{\|x_o - g_o,z\|}.$

Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space, G a linear subspace of X, $x \in X \setminus \overline{G}$ and $z \in X \setminus [x, G]$. If $P_{G,z}(x)$ has at least one element for every $x \in X$, then G is said to be *proximinal* ([10]).

LEMMA 2.4. ([10]) Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and H be a 2-hyperplane through the origin. Then H is proximinal if and only if there exists a non-zero $x \in X$ such that $0 \in P_{H,z}(x)$.

From Theorem 2.1 and Lemma 2.4, we obtain easily the following:

THEOREM 2.5. Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space, f a nonzero bounded linear 2-functional on $X \times V(z)$ and H a 2-hyperplane through the origin. Then the following statements are equivalent:

(1) *H* is proximinal; (2) For non-zero $u \in X$ and $z \in X \setminus V(x, u)$, (a) $\rho_{-}(u, z)(x) \leq f(x, z) \leq \rho_{+}(u, z)(x)$ (b) ||f|| = ||u, z||.

COROLLARY 2.6. Let $(X, \|\cdot, \cdot\|)$ be a smooth linear 2-normed space and H a 2-hyperplane through the origin. Then H is proximinal if and only if there exists a non-zero $u \in X$ such that $f(x, z) = \rho_+(u, z)(x)$ for all $x \in X$ and $\|f\| = \|u, z\|$.

3. A variational characterization of best approximation

In this section, we will give a variational characterizations of best approximation element. THEOREM 3.1. Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space, f be a non-zero bounded linear 2-functional on $X \times V(z)$ and a non-zero element $w \in X$. Then the following statements are equivalent:

(1) The following inequality holds,

$$(3.1) \qquad \rho_{-}(w,z)(x) \leq f(x,z) \leq \rho_{+}(w,z)(x) \quad \text{for all} \quad x \in X,$$

(2) The element w minimize the quadratic functional $F_{f_z}: X \to R$ defined by

$$F_{f_z}(u) = ||u, z||^2 - 2f(u, z).$$

PROOF. (i) \Rightarrow (ii): If w satisfies the relation (3.1), then we have $f(w, z) = ||w, z||^2$ for x = w. Now, let $u \in X$. Then we have

$$\begin{split} F_{f_{z}}(u) - F_{f_{z}}(w) &= \|u, z\|^{2} - 2f(u, z) + \|w, z\|^{2} \\ &\geq \|u, z\|^{2} - 2\rho_{+}(w, z)(u) + \|w, z\|^{2} \\ &\geq \|u, z\|^{2} - 2\|u, z\|\|w, z\| + \|w, z\|^{2} \\ &= (\|u, z\| - \|w, z\|)^{2} \geq 0, \end{split}$$

and so w minimize the functional F_{f_z} .

(ii) \Rightarrow (i): Suppose that w minimize the functional F_{f_z} . Then we have

$$F_{f_z}(w + \lambda u) - F_{f_z}(w) \ge 0$$

for all $u \in X$ and $\lambda \in R$. On the other hand, since $F_{f_z}(w + \lambda u) - F_{f_x}(w) = ||w + \lambda u, z||^2 - ||w, z||^2 - 2\lambda f(u, z)$ we have

$$2\lambda f(u,z) \le ||w + \lambda u, z||^2 - ||w, z||^2$$
(3.2)

for all $u \in X$ and $\lambda \in R$. Now, we assume that $\lambda > 0$. Then by (3.2) we have

$$f(u,z) \leq rac{\|w+\lambda u,z\|^2-\|w,z\|^2}{2\lambda} \quad ext{for all} \quad u \in X,$$

which gives $f(u, z) \leq \rho_+(w, z)(u)$ for $\lambda \to 0^+$ and all $u \in X$. Putting (-u) instead of u, we have $f(u, z) \geq -\rho_+(w, z)(-u) = \rho_-(w, z)(u)$ for all $u \in X$. Therefore, we have the relation (3.1).

By Theorem 3.1, we obtain the following:

COROLLARY 3.2. Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and fa non-zero bounded linear 2-functional on $X \times V(z)$ and a non-zero element $w \in X$. Then w is a element of smoothness of X and it minimizes the functional F_{f_*} if and only if

$$f(x,z) = \rho_+(w,z)(x)$$
 for all $x \in X$.

References

- Y.J. Cho and S.S. Kim, Gâteaux derivatives and 2-inner product spaces, Glasnik Mat. 27(47) (1992), 271-282.
- [2] Y.J. Cho, S.S. Kim and A. White, Extreme points and strict convexity, Demonostratio Math. 27 (1994), 199-208.
- [3] S. Elumalai, Y.J. Cho and S.S. Kim, Best approximation sets in linear 2normed spaces, Comm. Korean Math. Soc. 12 (1997), 619-629.
- [4] I. Franić, An extension theorem for bounded linear 2-functionals and applications, Math. Japonica 40 (1994), 79-85.
- [5] I. Frank, On the best coapproximation in linear 2-normed spaces, Math. Japonica 46 (1997), 147-150.
- [6] S. Gahler, Lineare 2-normierte Raume, Math. Nachr. 28 (1965), 1-43.
- [7] A. Khan and A. Siddiqui, B-orthogonality in 2-normed spaces, Bull. Calcuta Math. Soc. 74 (1982), 216-222.
- [8] S.S. Kim, Y.J. Cho and T.D. Narang, Some remarks of orthogonality and best approximations, Demonstratio Math 30 (1997), 293-300.
- [9] S. Mabizela, On bounded linear 2-functionals, Math. Japonica 35 (1990), 51-55.
- [10] S.A. Mariadoss, Orthogonality, Approximation and Fixed Points in Linear 2-Normed Spaces, Doctoral Diss., Madras Univ., 1982.
- [11] R. Ravi, Approximation in Linear 2-Normed Spaces and Normed Linear Spaces, Doctoral Diss., Madras Univ., 1994.
- [12] A. White, 2-Banach spaces, Math Nachr. 42 (1969), 43-60.

S. S. Kim Department of Mathematics Dongeui University Pusan 614-714, Korea *E-mail*: sskim@hyomin.dongeui.ac.kr S. S. Dragomir

School of Communications and Informatics Victoria University of Techology Melbourne City, MC 8001 Australia *E-mail*: sever@matilda.vu.edu.au