FUZZY ALMOST PRECONTINUOUS MAPPINGS

G.I. CHAE, S.S. THAKUR AND S. SINGH

ABSTRACT. The purpose of this paper is to introduce a new type of weakend fuzzy continuity called fuzzy almost precontinuous and investigate properties of it

1. Preliminaries

Let X be a set and I be the closed unit interval [0,1]. In [14], a fuzzy set $\mu \in X$ is defined to be a mapping $\mu : X \to \mathbf{I}$ and we will denote it by $\mu \in \mathbf{I}^X$ The fuzzy null set 0 and the fuzzy whole set $1 \in \mathbf{I}^X$ are fuzzy sets such that 0(x) = 0 and 1(x) = 1 for all $x \in X$, respectively. For a class $\{\lambda_{\alpha} \in \mathbf{I}^X : \alpha \in \Lambda\}$, the union $\bigvee_{\alpha \in \Lambda} \lambda_{\alpha}$ and the intersection $\bigwedge_{\alpha \in \Lambda} \lambda_{\alpha}$ are, respectively, defined by $\sup_{\alpha \in \Lambda} \{\lambda_{\alpha}\}$ and $\inf_{\alpha \in \Lambda} \{\lambda_{\alpha}\}$.

Let $\lambda, \mu \in \mathbf{I}^X$. Then λ is said to be *contained* in μ , denoted by $\lambda \leq \mu$, if $\lambda(x) \leq \mu(x)$ for every $x \in X$. The complement of λ , denoted by $1 - \lambda$, is defined by $(1 - \lambda)(x) = 1 - \lambda(x)$ for each $x \in X$. A fuzzy point x_β of X is a fuzzy set in X which is taking the value 0 for all $y \in X$ except for x and taking β at x. A fuzzy point x_β of X is said to be *contained* in a fuzzy set λ , denoted by $x_\beta \in \lambda$, if $\beta \leq \lambda(x)$

DEFINITION 1.1. [9] Let $\lambda, \mu \in \mathbf{I}^X$. Then

- (1) A fuzzy point x_{β} is said to be quasi-coincident with λ , denoted by $x_{\beta} Q \lambda$, if $\beta + \lambda(x) > 1$,
- (2) λ is said to be quasi-coincident with μ , denoted by $\lambda \neq \mu$. if there exists a point $x \in X$ such that $\lambda(x) + \mu(x) > 1$.

Received February 12, 2000

Authors wish to acknowledge the financial support of University of Ulsan made in the program year of 1999.

REMARK 1.1. It is shown in [9] that for any λ ,

- (1) $\mu \in \mathbf{I}^X$, $\lambda \leq \mu$ if and only if λ and 1μ are not quasi-coincident,
- (2) $x_{\beta} \in \lambda$ if and only if x_{β} is not quasi-coincident with 1λ .

Let $f: X \to Y$ be a mapping and let $\lambda \in \mathbf{I}^X$, $\mu \in \mathbf{I}^Y$. Then $f(\lambda) \in \mathbf{I}^Y$ such that $f(\lambda)(y) = \bigvee_{x \in f^{-1}(y)} \lambda(x)$ if $f^{-1}(y) \neq \emptyset$ and 0, otherwise. And $f^{-1}(\mu) \in \mathbf{I}^X$ such that $f^{-1}(\mu)(x) = \mu(f(x))$ for all $x \in X$.

We use in this paper the definition of fuzzy topology on a set X in the sense of [5], denote it by $\tau(X)$, and the ordered pair $(X, \tau(X))$ is called a fuzzy topological space (*fts*, for short). $\mu \in \tau(X)$ is called fuzzy open in X and the complement $(1 - \mu)$ is called fuzzy closed in X.

Definition 1.2.

- (1) $\operatorname{Int}(\lambda) = \bigvee \{ \mu : \mu \leq \lambda, \mu \in \tau(X) \}$ is called the *interior* of λ .
- (2) $\operatorname{Cl}(\lambda) = \bigwedge \{ \mu : \lambda \leq \mu, (1 \mu) \in \tau(X) \}$ is called the *closure* of λ .

Let $(X,\tau(X))$ be an fts. Then $\mu \in \mathbf{I}^X$ is called a Q-neighborhood (shortly, Q-nbd) of a fuzzy point x_β [9] (resp. pre Q-nbd [8, 12]) if there exists a $\mu \in \tau(X)$ (resp. $\lambda \in \text{FPO}(X)$) such that $x_\beta Q \lambda \leq \mu$.

DEFINITION 1.3. [1, 2, 10] Let x be an fts. Then $\lambda \in \mathbf{I}^X$ is said to be:

- (1) fuzzy regular open if $\lambda = Int(Cl(\lambda))$,
- (2) fuzzy feebly open ($\equiv \alpha$ -open)if $\lambda \leq Int(Cl(Int(\lambda)))$.
- (3) fuzzy preopen if $\lambda \leq \text{Int}(\text{Cl}(\lambda))$.
- (4) fuzzy semi open if $\lambda \leq \operatorname{Cl}(\operatorname{Int}(\lambda))$,
- (5) fuzzy regular closed if $\lambda = Cl(Int(\lambda))$,
- (6) fuzzy feebly closed ($\equiv \alpha$ -closed)if $Cl(Int(Cl(\lambda))) \leq \lambda$,
- (7) fuzzy preclosed if $\operatorname{Cl}(\operatorname{Int}(\lambda) \leq \lambda)$,
- (8) fuzzy semi cloesd if $Int(Cl(\lambda) \leq \lambda)$.

In this paper, we will denote the family of all fuzzy open (resp. fuzzy regular open, fuzzy α -open, fuzzy pre-open, fuzzy semi-open and fuzzy regular closed) sets in an fts X by $\tau(X)$ (resp. FRO(X), F α O(X), FPO(X), FSO(X) and FRC(X)).

REMARK 1.2. For an fts $(X, \tau(X))$, the following holds: FRO $(X) \subset \tau(X) \subset F\alpha O(X) \subset FPO(X)$ (or, FSO(X))

DEFINITION 1.4. [1, 2, 5, 10, 12] Let $\lambda \in \mathbf{I}^X$. Then

- (1) $\alpha \operatorname{Int}(\lambda) = \bigvee \{ \mu : \mu \leq \lambda, \mu \in \operatorname{F} \alpha \operatorname{O}(X) \}$ is called the α -interior of λ (feeble interior $f \operatorname{Int}(\lambda)$),
- (2) $pInt(\lambda) = \bigvee \{ \mu : \mu \leq \lambda, \mu \in FPO(X) \}$ is called the preinterior of λ ,
- (3) $sInt(\lambda) = \bigvee \{ \mu : \mu \le \lambda, \mu \in FSO(X) \}$ is called the semi interior of λ ,
- (4) $\alpha \operatorname{Cl}(\lambda) = \bigwedge \{ \mu : \lambda \leq \mu, (1 \mu) \in \operatorname{F} \alpha \operatorname{O}(X) \}$ is called α -closure of λ (feeble closure $f \operatorname{Cl}(\lambda)$).
- (5) (4) $pCl(\lambda) = \bigwedge \{ \mu : \lambda \leq \mu, (1 \mu) \in FPO(X) \}$ is called preclosure of λ .
- (6) $sCl(\lambda) = \bigwedge \{ \mu : \lambda \le \mu, (1 \mu) \in FSO(X) \}$ is called semi closure of λ .

REMARK 1 3. Let $\lambda, \mu \in \mathbf{I}^X$. Then

- (1) $\lambda \in \text{FPO}(X)$ if and only if for every fuzzy points $x_{\beta} \in \lambda$, there exists $\delta \in \text{FPO}(X)$ such that $x_{\beta} \in \delta \leq \lambda$ [11],
- (2) $\lambda \in FPO(X)$ if and only if $\lambda = pInt(\lambda)$ [12],
- (3) $1 \lambda \in FPO(X)$ if and only if $\lambda = pCl(\lambda)$ [12].

DEFINITION 1 5. [1, 2, 4, 5, 8, 10, 11] A mapping $f : X \to Y$ is said to be:

- (1) fuzzy continuous if $f^{-1}(\lambda) \in \tau(X)$ for each $\lambda \in \tau(Y)$
- (2) fuzzy feebly continuous (fuzzy α -continuous, fuzzy strongly semi continuous) if $f^{-1}(\lambda) \in F\alpha O(X)$ for each $\lambda \in \tau(Y)$.
- (3) fuzzy precontinuous if $f^{-1}(\lambda) \in \text{FPO}(X)$ for each $\lambda \in \tau(Y)$.
- (4) fuzzy M-precontinuous (fuzzy pre-irresolute) if $f^{-1}(\lambda) \in FPO(X)$ for each $\lambda \in FPO(Y)$,
- (5) fuzzy almost continuous if $f^{-1}(\lambda) \in \tau(X)$ for each $\lambda \in FRO(Y)$.

REMARK 1.4. In the above Definition 1.5,

(1) fuzzy M-precontinuity of [7] and fuzzy pre-irresoluteness of [8] are the same mappings on any fts, and

(2) fuzzy feeble continuity of [2] and fuzzy strongly semicontinuity of [10] are also the same mappings and in [4] it was also renamed by fuzzy α -continuity. So, from now on, we will call it a fuzzy α -continuous mapping.

2. Fuzzy almost precontinuous mappings

DEFINITION 2.1. Let X and Y be fts's. A mapping $f : X \to Y$ is said to be *fuzzy almost precontinuous* (written as *f.a.p.C.*) if $f^{-1}(\lambda) \in FPO(X)$ for each $\lambda \in FRO(Y)$.

REMARK 2.1. Every fuzzy precontinuous and fuzzy almost continuous mapping are f.a.p.C. But the converses may not be true, as shown by the following examples.

EXAMPLE 2.1. Let $X = \{a, b\}$, $Y = \{x, y\}$ and let $\lambda \in \mathbf{I}^X$, $\mu \in \mathbf{I}^Y$ such that $\lambda(a) = 0.4$, $\lambda(b) = 0.3$, and $\mu(x) = 0.5$, $\mu(y) = 0.6$, and let $\tau(X) = \{0, \lambda, 1\}$ and $\tau(Y) = \{0, \mu, 1\}$. Define $f : (X, \tau(X)) \to (Y, \tau(Y))$ by f(a) = x and f(b) = y. Then f is f.a.p.C., but not fuzzy precontinuous

EXAMPLE 2.2. Let $X = \{a, b\}, Y = \{x, y\}$ and let $\lambda \in \mathbf{I}^X, \mu \in \mathbf{I}^Y$ such that $\lambda(a) = 0.5, \lambda(b) = 0.4$, and $\mu(x) = 0.4, \mu(y) = 0.4$, and let $\tau(X) = \{0, \lambda, 1\}$ and $\tau(Y) = \{0, \mu, 1\}$. Define $g : (X, \tau(X)) \to (Y, \tau(Y))$ by g(a) = x and g(b) = y. Then g is f.a.p.C., but not fuzzy almost continuous.

In general, the composition of f.a.p.C. mappings may be not f.a.p.C., as shown by the following.

EXAMPLE 2.3. Let $f: (X, \tau(X)) \to (Y, \tau(Y))$ be the mapping defined in Example 2.1, then f is f.a.p.C. Let $Z = \{v, w\}$ and $\eta \in \mathbf{I}^Z$ such that $\eta(x) = 0.4$, $\eta(y) = 0.4$ and let $\tau(Z) = \{0, \eta, 1\}$. Define $g: (Y, \tau(Y)) \to (Z, \tau(Z))$ by g(x) = v and g(y) = w. Then g is also f.a.p.C. However, the composition $g \circ f: (X, \tau(X)) \to (Z, \tau(Z))$ is not f.a.p.C., because $\operatorname{Int}(\operatorname{Cl}((g \circ f)^{-1}(\eta))) < (g \circ f)^{-1}(\eta)$ and thus $(g \circ f)^{-1}(\eta) \notin \operatorname{FPO}(X)$ for $\eta \in \operatorname{FRO}(Z)$. Note that f is not fuzzy precontinuous.

164

THEOREM 2.1. Let $f: X \to Y$ is fuzzy precontinuous and $g: Y \to Z$ is f.a.p.C., then $g \circ f: X \to Z$ is f.a.p.C.

PROOF. Let $\lambda \in FRO(Z)$. Then $g^{-1}(\lambda) \in \tau(X)$, because g is f.a.p.C. Since f is fuzzy precontinuous, $f^{-1}(g^{-1}(\lambda)) = (g \circ f)^{-1}(\lambda)$ $\in FPO(X)$. Hence $g \circ f$ is f.a.p.C.

THEOREM 2.2. Let $f : X \to Y$ is fuzzy M-precontinuous and $g : Y \to Z$ is f.a.p.C., then $g \circ f : X \to Z$ is f.a.p.C

PROOF. Let $\lambda \in \text{FRO}(Z)$, then $f^{-1}(\lambda) \in \text{FPO}(Y)$. Thus $f^{-1}(g^{-1}(\lambda)) = (g \circ f)^{-1}(\lambda) \in \text{FPO}(X)$. Thus $g \circ f$ is f a.p.C.

THEOREM 2.3. Let f be a mapping from an fts X to an fts Y, then the following are equivalent:

- (1) f is f.a.p.C.
- (2) $(1 f^{-1}(\mu)) \in FPO(X)$ for each $\mu \in FRC(Y)$.
- (3) $f^{-1}(\lambda) \leq pInt(f^{-1}(Int(Cl(\lambda))))$ for each $\lambda \in \tau(Y)$.
- (4) $pCl(f^{-1}(Cl(Int(\mu)))) \leq f^{-1}(\mu)$ for each $(1 \mu) \in \tau(Y)$.
- (5) for each fuzzy point x_{β} of X and $\mu \in FRO(Y)$ containing $f(x_{\beta})$, there exists $\lambda \in FRO(X)$ such that $x_{\beta} \in \lambda$ and $\lambda \leq f^{-1}(\mu)$.
- (6) for each fuzzy point x_{β} of X and $\mu \in FRO(Y)$ containing $f(x_{\beta})$, there exists $\lambda \in FPO(X)$ such that $x_{\beta} \in \lambda$ and $f(\lambda) \leq \mu$.
- (7) for each fuzzy point x_{β} of X and $\mu \in FRO(Y)$ with $f(x_{\beta}) Q$ μ , there exists $\lambda \in FPO(X)$ such that $x_{\beta} Q \lambda$ and $f(\lambda) \leq \mu$.
- (8) for each fuzzy point x_{β} of X and $\mu \in FRO(Y)$ with $f(x_{\beta}) Q \mu$, there exists $\lambda \in FPO(X)$ such that $x_{\beta} Q \lambda$ and $\lambda \leq f^{-1}(\mu)$.

PROOF. (1) \Leftrightarrow (2). The proofs are obvious.

(1) \Rightarrow (3). Let $\lambda \in \tau(Y)$, then $\lambda \leq \operatorname{Int}(\operatorname{cl}(\lambda))$ and hence $f^{-1}(\lambda) \leq f^{-1}(\operatorname{Int}(\operatorname{Cl}(\lambda)))$. From [1. Theorem 5.6-(b)]. $\operatorname{Int}(\operatorname{Cl}(\lambda)) \in \operatorname{FRO}(Y)$ Thus $f^{-1}(\operatorname{Int}(\operatorname{Cl}(\lambda))) \in \operatorname{FPO}(X)$ since f is $f.a \ p.C.$ So. $f^{-1}(\lambda) \leq f^{-1}(\operatorname{Int}(\operatorname{cl}(\lambda))) = \operatorname{pInt}(f^{-1}(\operatorname{Int}(\operatorname{Cl}(\lambda))))$ from Remark 1.3.

(3) \Rightarrow (1). Let $\lambda \in \text{FRO}(Y)$, then $f^{-1}(\lambda) \leq \text{pInt}(f^{-1}(\text{Int}(\text{Cl}(\lambda))))$ = $\text{pInt}(f^{-1}(\lambda))$ by (3). So $f^{-1}(\lambda) = \text{pInt}(f^{-1}(\lambda))$. Hence $f^{-1}(\lambda) \in \text{FPO}(X)$. (2) \Rightarrow (4): Let $(1 - \mu) \in \tau(Y)$, then $\operatorname{Cl}(\mu) = \mu$. Thus $\operatorname{Cl}(\operatorname{Int}(\mu)) \leq \mu$ and so $f^{-1}(\operatorname{Cl}(\operatorname{Int}(\mu))) \leq f^{-1}(\mu)$. From [1, Theorem 5.6-(a)], $\operatorname{Cl}(\operatorname{Int}(\mu)) \in \operatorname{FRC}(Y)$. So $(1 - f^{-1}(\operatorname{ClInt}\mu) \in \operatorname{FPO}(X)$ by (2). Thus $p\operatorname{Cl}(f^{-1}(\operatorname{ClInt}\mu)) = f^{-1}(\operatorname{ClInt}(\mu)) \leq f^{-1}(\mu)$.

(4) \Rightarrow (2): Let $\mu \in FRC(Y)$, then $pCl(f^{-1}(\mu)) = pCl(f^{-1}(ClInt(\mu))) \le f^{-1}(\mu)$. Thus $pCl(f^{-1}(\mu)) = f^{-1}(\mu)$. So $(1-f^{-1}(\mu)) \in FPO(X)$.

(1) \Rightarrow (5): Let x_{β} be a fuzzy point of X and $\mu \in FRO(Y)$ with $f(x_{\beta}) \in \mu$. Putting $\lambda = f^{-1}(\mu)$, then by (1) $\lambda \in FPO(X)$, $x_{\beta} \in \lambda$ and $\lambda \leq f^{-1}(\mu)$.

(5) \Rightarrow (6). Let x_{β} be a fuzzy point of X and $\mu \in \text{FRO}(Y)$ containing $f(x_{\beta})$. Then by (5) there exists $\lambda \in \text{FPO}(X)$ such that $x_{\beta} \in \lambda$ and $\lambda \leq f^{-1}(\mu)$. So $x_{\beta} \in \lambda$, $f(\lambda) \leq f(f^{-1}(\mu)) \leq \mu$.

(6) \Rightarrow (1): Let $\mu \in FRO(Y)$ and let x_{β} be a fuzzy point of X such that $x_{\beta} \in f^{-1}(\mu)$. Then $f(x_{\beta}) \in f(f^{-1}(\mu)) \leq \mu$. So by (6) there exists $\lambda \in FPO(X)$ such that $x_{\beta} \in \lambda$ and $f(\lambda) \leq \mu$, that is, $x_{\beta} \in \lambda \leq f^{-1}(\mu)$. Thus by Remark 1.3-(1), $f^{-1}(\mu) \in FPO(X)$. So f is f.a.p.C

(1) \Rightarrow (7): Let x_{β} be a fuzzy point of X and $\mu \in FRO(Y)$ such that $f(x_{\beta}) \neq \mu$. Then $f^{-1}(\mu) \in FPO(X)$ by (1) and $x_{\beta} \neq f^{-1}(\mu)$. Taking $\lambda = f^{-1}(\mu)$, then $\lambda \in FPO(X)$, $x_{\beta} \neq \lambda$ and $f(\lambda) = f(f^{-1}(\mu)) \leq \mu$.

 $(7) \Rightarrow (8)$: Let x_{β} be a fuzzy point of X and $\mu \in FRO(Y)$ such that $f(x_{\beta}) \neq \mu$, then by (7) there exists $\lambda \in FPO(X)$ such that $x_{\beta} \neq \lambda$ and $f(\lambda) \leq \mu$. Thus we have $\lambda \leq f^{-1}(f(\lambda)) \leq f^{-1}(\mu)$.

(8) \Rightarrow (1): Let $\mu \in \text{FRO}(Y)$. To show $f^{-1}(\mu) \in \text{FPO}(X)$ we use Remark 1.3-(1). let x_{β} be a fuzzy point of X such that $x_{\beta} \in f^{-1}(\mu)$. Then $f(x_{\beta}) \in \mu$. Choosing the fuzzy point $x_{(1-\beta)}$, then $f(x_{(1-\beta)} Q \mu$. So by (8) there exists $\delta \in \text{FPO}(X)$ such that $x_{(1-\beta)} Q \delta$ and $f(\delta) \leq \mu$. Now $x_{(1-\beta)} Q \delta$ implies that $x_{(1-\beta)}(x) + \lambda(x) = 1 - \beta + \mu(x) >$ 1. It follows that $x_{\beta} \in \lambda \leq f^{-1}(\mu)$. So by Remark 1.3-(1). $f^{-1}(\mu) \in \text{FPO}(X)$. Thus f is f.a.p.C.

DEFINITION 2.2. [6] An fts X said to be fuzzy semi regular if for each $\lambda \in \tau(X)$ and for each fuzzy point x_{β} of X with $x_{\beta} Q \lambda$, there exists $\mu \in \tau(X)$ such that $x_{\beta} Q \mu$ and $\mu \leq \text{Int}(\text{Cl}(\mu)) \leq \lambda$.

THEOREM 2.4. Let $f : X \to Y$ be a mapping from an fts X to a fuzzy semi regular space Y, then f is f.a p.C.s if and only if f is fuzzy precontinuous.

PROOF. Necessity: Let x_{β} be a fuzzy point of X and $\lambda \in \tau(Y)$ such that $f(x_{\beta}) \ Q \ \lambda$. Since Y is fuzzy semi regular, there exists $\mu \in \tau(Y)$ such that $f(x_{\beta}) \ Q \ \mu$ and $\mu \leq \operatorname{Int}(\operatorname{Cl}(\mu)) \leq \lambda$. Since $\operatorname{Int}(\operatorname{Cl}(\mu)) \in \operatorname{FRO}(Y)$ and f is $f \ a.p.C$, by Theorem 2.3-(7) there exists $\mu_1 \in \operatorname{FPO}(X)$ such that $x_{\beta} \ Q \ \mu_1$ and $f(\mu_1) \leq \operatorname{Int}(\operatorname{Cl}(\mu))$. Thus $\mu_1 \in \operatorname{FPO}(X)$ such that $x_{\beta} \ Q \ \mu$ and $f(\mu_1) \leq \lambda$. So by [11, Theorem 3.4] f is fuzzy precontinuous.

Sufficiency is obvious and is thus omitted.

THEOREM 2.5. Let f be a mapping from an fts X to an fts Y. If the graph mapping $G_f: X \to X \times Y$ of f is f.a.p.C., then f is f.a.p.C.

PROOF Let $\mu \in \operatorname{FRO}(Y)$. then $f^{-1}(\mu) = 1 \bigwedge f^{-1}(\mu) = (G_f)^{-1}(1 \times \mu)$. Since $1 \times \mu = 1 \times \operatorname{Int}(\operatorname{Cl}(\mu)) = \operatorname{Int}(1 \times \operatorname{Cl}(\mu)) = \operatorname{Int}(\operatorname{Cl}(1 \times \mu))$, $1 \times \mu \in \operatorname{FRO}(X \times Y)$. Since G_f is f.a.p.C.. $f^{-1}(\mu) = (G_f)^{-1}(1 \times \mu) \in \operatorname{FPO}(X)$ Hence f is f.a.p.C.

From the above. We have the following implication diagram.

$$\begin{array}{cccc} f \ m \ p.C \\ & \downarrow \\ f.\alpha.C. \Rightarrow & f.p.C \Rightarrow & f.a.p.C. \\ & \uparrow \\ f.C \qquad \Rightarrow & f.a.C. \end{array}$$

where f.m.p.C, $f.\alpha.C.$, f.p.C., $f.a \ p \ C$, f.C. and f.a.C. denote fuzzy M-precontinuous [7, 8], fuzzy α -continuous [2,4,10], fuzzy precontinuous [10], $fuzzy \ almost \ precontinuous$, fuzzy continuous [5] and fuzzy almost continuous [1].

References

- K. K. Azad. On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14-32.
- G. I. Chae and J. Y. Lee, A Fuzzy feebly open set in fuzzy topological spaces, U.O.U. Report 17(1) (1986), 139-142
- G. I. Chae and J. Y. Lee, On fuzzy feeble continuity U.O.U. Report 17(1) (1986) 143-146

- [4] G. I. Chae, S. S. Thakur and S. Singh, On fuzzy M-preopen Mappings, East Asian Math. Comm. 1 (1998), 69-73
- [5] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [6] M N. Mukherjee and S. P. Sinha, On some near-fuzzy continuous functions between fuzzy topological spaces, Fuzzy Sets and Systems 34 (1990), 245-254.
- [7] S. Nanda, Strongly compact fuzzy topological spaces, Fuzzy Sets and Systems 42 (1991), 252-262.
- [8] J. H. Park and B. S. Park, Fuzzy pre-irresolute mappings, Pusan-Kyongnam Math. J. 10 (1994), 303-312.
- [9] P. M. Pu and Y. M. Liu, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore Smith convergence, J. Math. Anal. Appl. 76 (1980), 571-599
- [10] A. S. Bin Shahana, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 (1991), 303-308.
- [11] A. S. Bin Shahana, Mappings in fuzzy topological space, Fuzzy Sets and Systems 61 (1994), 209–213.
- [12] S. S. Thakur and S. Singh, Fuzzy M-precontinuous mappings,
- [13] T. H. Yalvac, Fuzzy sets and functions on fuzzy spaces, J. Math. Anal. Appl. 120 (1987), 409-423.
- [14] L. A. Zadeh, Fuzzy sets, Inform and Control 8 (1965), 338-358

G. I Chae Dept. of Mathematics University of Ulsan Ulsan 680-749, Korea *E-mail*: gichae@uou.ulsan.ac.kr

S. S. Thakur and S. Singh Dept. of Applied Math. Gvnt Engin. Coll. Jabalpur 482011. India