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GRAPHS AND NON-NORMAL OPERATOR (I)

Young Sik Park

Abstract. In this paper, we investigate the properties of non-noi rnal 
(convexoid, hyponormal) adjacency operators for a 잉raph under two 
operations, tensoi product and Cartesian one

1. Introduction

A directed graph G = (V, E. is a system of sets V, E and

maps 泸:E V. An element v G V (resp. e E E) is called a 

vertex (resp arc). If 9+(e) = u and d~(e) — v for some e E E. then 

u is a server of v (or an initial vertex) and t? is a receiver of u (or a 

terminal vertex). For each vertices ?z, v in V,td+(u, u) (resp. d~ (u, v)) 

is the number of all common servers (resp. common receivers) of u 

and v. The outdegree d+ (饥.the indegree d~(v). and the valency 

(or degree) d(v) are defined by d十(u) = #{e E E : d*(e) = f}. 

d~(v) = #{e E E : d~(e) = v} and d(v) = 口+(0) + £厂(&), respectively.

A graph is called locally finite if every vertex has finite valency. A 

g호aph has bounded valency if there is a constant M > 0 such that 

d(v) < M for any vertex v G V. Now an adjacency matrix has been 

consider for finite graphs. In[8] Morhar defined an adjacency operator 

fo호 infinite graph. In general, an adjacency operator is closed, but we 

restrict our attention to bounded adjacency operators.

Following [2], we recall adjacency operators of graphs Let H be the 

Hilbert space £2(V) with the canonical basis {ev : e G V} defined by 

ev{u) = Then a closed operator』4(G) is defined by
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Dom(A) = {J: =xvev € H : Ei £ xv\2 < 00} and 

v^V u^V veD~(u)

Ax = E E

uGV v^D~ (u)

where D~(u) is the set of all servers of u. We call A(G) the adjacency 

operator of G, and A(G) can be expressed as the operator on £2(V) 

whose matrix representation (a^) with respect to the basis {^}, where

E V and

[1, if there exists the arrows from vz to v3\ 
aZJ = <

I 0, otherwise.

It is ksown by [2 . Th. 2j that W(G) is bouiided if and only if G 

has bounded valency, i.e. the valency d(v) is bounded , sup(d(t;): v E 

V} < 00}. In this case, the adjoint 4(G)* of A(G) is given by A(G)*z = 

Euev f s+(u)乩& f°r x = £>即叭％ £ 乩 where D" (u) is the set 

of all receivers of u. For a directed graph G、it makes sense to consider 

the directed graph G* whose arrows are all oppositely directed for G. 

I끄 [5], the adjacency operator A(G*) of G* is the adjacency operator 

A(G)*. Then G* is called the adjoint graph of G. that is, one of 

edges are exactly the converses for those of G. Note that G* does 

not denote what is called the line graph of G. In [3], the adjacency 

operator A(G) on €2(V) can be defined by the dyadic representation: 

4(G)) = ® ew, wh은re a dyad x ® y means the rank 1

operator defined by (x ® y)z = (z, y)x.

Note that above summation converges in the strong operator topol

ogy. Next we see the tensor product of graphs. Let G = (V、E) 

and H = (l忆 F) be directed graph. Then the adjacency operator 

71(G) and A(H) act on Hilbert space £으(，) and respectively. 

So the tensor product A(G) ® A(H) acting on ^2(V) ® £2(W) is de

fined by (Q4(G) ® A(H))x ® y,x ® y) = (A(G)x ® A(H)y,x ® y、) 

=(A(G)x, x){A{H}y^ y) for x e ^2(V) and y 6 £2(W). Then the ten

sor product G 0 H oi G and H is defined as a graph G ® 2/with 
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vertices V x W such that ((f, w). (x, y)) G E(G ® H) if and only if 

((A(G) ® A(H))ev ® ew,ev ® ew)二二 1. Thus the tensor product G ® H 

of G and H is a graph whose adjacency ope호ator is A(G) ® A(H). In 

the finite case, the tensor product of graphs is obtained by making use 

of. the Kronecker product of the adjacency matrices.

In [4]. the adjacency operator of the Cartesian product G ® H for 

simple graphs G and H is given by For

a directed graph G, the spectrum a(G), the approximate point spec

trum aap(G). the normal approximate spectrum the numeri

cal range W(G), the spectral radius 7(G), the numerical radius 心(G) 

and the norm ||G|| of a graph G are defined as rrap(.4(G)).

IL(A(G)), 7(^(G)). cj(A(G)), and ||A(G)||, respectively

Throughout this paper, a graph stands for a locally finite directed 

graph without multiple arces

In section 2. we shall show that Hn(G)^n(H) C ||G®

H\\ < H이I 丁 \\H\\, and C3(W(T) 应(H)) C where Gc)X

denotes the closed convex hull of X, moreover we shall give examples 

of proper inclusions in the above illations.

In section 3, we shall investigate the properties of non-normal(convexoid 

and hyponormal) adjacency operators of simple graphs G and H under 

two operations, tensor product and Cartesian product.

2. Spectras and numerical ranges of graphs

B.Mohar and M.0mladic[9i showed that

(1) °(H)

for any locally finite graphs G and H. J.I. Fujii [11 showed that 7(G ® 

H) = 7(G) - 7(G). However the equality (1) does not hold for other 

spectras. We shall show here.

Theorem 2.1 We have

⑵ [[(G) . [[(H) u [[(G® H)

n n n

for graphs G and H.
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Proof. Since

0((구) ® 4(H) - 46 = J4(G) - a) ® 0 + 4(G) ® (,4(H) - 仞.

we have

||(*(G) ® A(H) - 이*n ®yn\\

=||{(A(G) - a) ® /3 + A(G) ® (*(H) - (5)}xn ®

< ||(X(G) - a)xn ® £加现 + M(G)xn ® (.4(H)-仞由}

=||Q4(G) - a)xn\\\\/3yn\\ + ]|，4(G)由|||(A(H)仞赢||

< ||Q4(G) - a)a시III’이I + |M(G)||W(H) - 伽시I - 0

and

IIM(G)如4(丑) 一 이3)* 為®?/nil

< ||(&G) - a)*編HU伽”|| + M(G)*Zn|||||(A(H)一仞*：如II

= ||(/(G) - a)d|||이 + |M(G)*||||(，4(H) — 仞*s|| - 0

as 九 t oo, whenever a G H(G) (resp. (3 G [L,(H)) and (xri} (resp. 

{2/n} ) is a sequence of unit vectors satisfying ||(A(G) —(y)x7l || —> 0 

(resp. |j(A(G)-/3)?/n|| —> 0) and ||(，(G)-사)七膈]| 一스 0 (resp. ||(.4(G)- 
而*如11 一스 0). Hence 叫3 € fln(G ® H).

We shall show that there are adjacency operators』4(G) and A{H} 

for which the equality in (2) does not hold as follows :

Example 2.2. Let G be the graph

G : oo , *(G)=(]()丿，

and let G ® G be 

o /0 0 0 0
G®G： \ • A(G)<M(G)= H o o Q

° ° \1 0 0 0
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We have observed that A(G) have empty normal approximate sp은c- 

trum 卩孔任?) of a graph G by a theorem due to Kasahara and Takai[7L 

But A(G) ® *(G) has a normal approximate proper value , that is.

By using same manner as a proof in Theorem 2.1, we can easily 

show the following.

Corollary 2.3. We have(jap(G) •。每(H) c(rap(G ® H),

THEOREM 2.4. Let A(G) and A(H) be any adjacency operators act

ing on Hilbert space £2(V) and respectively. Then

(i) Co(W(G) - W(H)) c W{G ® H),
(ii) ColwlG) U W(H)) = W(G © H) and s(G) 一一 3나I) = a(G © 

H), and

(iii) \\G ® H\\ \\G\\\\H\\ and ||G © H|| < ||G|| + ||7J||

Proof, (i) Let A G W(G) and 卩，e Then there exist unit

vectors x G £2(V) and y £ £2(MK) such that A = (A{G)x, x) and 卩二二 

(A(H)y. y) Thus we have

사£ = (A(G)x, x)(A(H)y, y) — x®y) e W(G®H)

Since W(G®H) is convex, Co(W(G) • W(H)) C It follows

that g(G) . 3(H) < ®

(ii) It is clear from (i) that there is a scalar t in [0,1] such that 

ZA -4- (1 — t)口 € Co(W(G) U W(H)). Hence we have

*人 f (1 — x) -r (1 — y、)

=(4(G)W" Vtx)十(A(H)Ji二初,W^ty)

=(Q4(G) © A^H^Vtx,"匸二初),(Vtx, JT二榆)

Since ||께 = ||y|| = 1,

H(/z, \/l -ty)||2 = \\Vtx\\2 + ||、/1 - 切IF = 1

Hence we conclude that tX + (1 — G W(G ® H)
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Conversely, let z C I〃((구 & H). Then we have

Z = (X(G © H)(x, g), (x, g))

=((X(G) 01 + I <3 /4(H))z ®y,x®y}

=(/4(G)/, z)(g, g) + (x, x)(A(H)y, g)

=(A(G)x,x) + (A(H)y,y) e Co(W(G) U W(H)).

Therefore we have Co(W(G) U IV(ff)) ~W{G® ff), and hence it 

follows that cj(G) + 3(H) = cj(G* ® H). In (iii) the equality is well- 

known and the inequality is clear.

In Theorem 2.4 W(G ® H) (resp. \\G ® H||) is not always equal to 

Co(W(G) • W(ff)) (resp. ||에 + Here we give an elementary 

example :

Example 2.5. Let G and II tte foHowing grapdis :

G : o — o , >1(G) =(0 0

H ：。一>。，甘

Then we have

G®H

o o

\

o o

,4(G)S4(H)= (S Zo o
V。

/0 0 0

_ 0 0 1 0 1
= 0 0 0 0 '

\0 0 0 0/

/0 1 D 0
o 一> o

G®H-. f t ’A(G"4(H)= Q J Q Q

° t ° \1 0 1 0
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It is easy to show that = W(H) = (A : |시 < from which 

we have C3(W(G) • 附(H)) C (A : |시 < 打. Let xx = ( ? ) . 也 = 

宀 一 E

(、須)and x — (xi,a：2)- Then it follows that ((A(G)® x) = *

Thus 寿 is not in the set {入 : ||시 < |}, Moreover, it is clear that 

q(G) • 3(H) = § V * M s(G ® H). Also we have \\G © H|| 二二 \/2 <2 — 

\G\\ + \\H\\.

3. Non-normal adjacency operators

We list definitions on adjacency operators for graphs discussed in 

the below

(1) A(G) is normal if &G)財(G) = A(G)A(Gy.

-(2) A(G) is hyponormal if &C)*A(G) > and

(3) A(G) is convexoid 迁 W(G) = Co(j(G).
Also we state some definitions for the graph G. A source of a directed 

graph G is a vertex v whose d~ (?;) = 0. A source v is called non-trivial 

if d，* (u)尹 0. A sink of G is a vertex ?; whose d+ (v) = 0. A sink v is 

called non-trivial if d~(v)尹 0. We recall that a graph G is normally 

symmetric if d~(u, v) — d+ (t/(, t?) for any u, v E V. Tn general, it follows 

from Theorem 2.1 and Theorem 2.4(i) that

(3) *(U(G) - U(H)) C W(G ® H).

n n

By the equality in (3) and the following lemma, we shall investigate 

the properties of non-normal (Convexoid and hyponormal) adjacency 

operators under two operators, tensor product and Cartesian one.

Lemma 3.1. The adjacency operator /4(G) of a graph G is con

vexoid if and only if the closed numerical range W (G) is sparmed by 

the normal approximate spectrum HJG) of A(G) m the sense that
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PROOF. Suppose thatis convexoid. Then W(G) =

and so an extrem point of W(G) belongs to o*(G) and* so aap(G). Thus 

we have W(G) = Co ext(VK(G)) = Co(cr(G) A dW(G)), where extX 

denotes the set of all extreme points of X and dX denotes the boundary 

of X. On the other hand, we have a(G) A dW(G) C (G) by Hilde

brands theorem [6], Then it follows W(G) C Co{a(G) n 이卩((了)) C 

(WL(G) C W). Thus W) = C이L(잇_

Conversely, if A(G} satisfies the equality W{G) —then 

W(G)二 CklLJG) C Coa(G) C W{G\ so that the equality W(G)— 

Coo(G、) holds. Therefore A(G) is convexoid.

THEOREM 3.2. Let 4(G) and A(H) be convexoid adjacency opera

tors for graphs G and H, respectively. Then the equality ® H)=

* IL(H)) holds if and only if A(G} ® A(H) is convexoid.

Prck>E. Since 4(G) and are convexoid operators, it follows 

from Lemma 3.1 that W(G) = CoY[n(G) and W(G) = CoY\n(H). 

Assume that the equality in (3) holds, then we have

W(G®H) = Co(JJ(G) . [[(H)) = CoCCo JJ(G) • Co [[(H))

n n n n

=Co(W(G) • W(H))=(新(CS(G) • Cw(H)) = Co{(r{G ® H)} 

n

Thus &G) ® A(H) is a convexoid.

Conversely, if A(G) ®A(H) is a convexoid adjacency operator, then 

it follows from Lemma 3.1 that W(G ®H) = Co([L(G ® H)). Hence 

we have that

c이H) 으 CocRG ®H) = Co(c「(G) . (丁(H)) 

n

=Co(W(G) •帀面)C W(G®H)

by (i) in Theorem 2.4, and

Co(W(G)-W(H)) = Co(CoJJ(G) . C。[[(H)) = Co([[(G) • [[(H)).

n n n n
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Therefore the equality W(G ® H) ]丄(H)) holds

In connection with Theorem 3.2, we can easily see the following :

COROLLARY 3.3 Let .4(G) and A{H) be convexoid adjacency oper

ators for graphs G and H, respectively. Then the equahty W(G ® H)— 

Co(W(G) • W(/f)) is true if and only if A(G) ® A(H) is cov/uexotd.

The tensor product of two adjacency operators is not necessarily 

convexoid even if two adjacency operators are convexoid as follows.

Example 3.4. Let A(G) be the adjacency operator acting on ^2(V) 

defined by

&G) = (，；)，and G .。

Let A(H) be the adjacency operator acting on £2(l¥) such that

W) = C<n(H) = {Uh\|M：}

厶 
n

Setting A(J)=」4(G) © A(H) and A(K) = 4(J)*, we have

______ ____________ ___ 1
W(J) = W(G $H) = C3(W(G) U W(H)) = (A . |A| < -}

厶 

and

______ ______________ ___ 1
W(K) = W(G^ © H*) = 宓(帝(G*) U W(H*)) = {A : |시 <

厶

Since it is clear that

C이J(丿) = CofJ(G ㊉ H) = C씨](G) U [[(H)) 

n n n n

= {A : I시 M §} = W(丿) 

厶

and W(K) = Co (K). it follows from Lemma 3.1 that A(J) and 

4(K) are convexoid operators. But we have

Co [[(J ® K) £ W{J®K)
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Theorem 3.5. Let A(G) avd 4(H) be convexoid adjacency opera

tors for graphs G and H, respectively. Then A(G)®A(H) is convexotd.

PROOF. If X(G) and A(H) axe convexoid, then it follows from 

Lemma 3.1 that W(G) = CoY[n(^ and = Co Thus

we have

W(G®W)= CoW(G) U祈而)

=Co(Co[J(G) U CoJJ(ff)) = CoY[(G © H), 

n n ti

and hence A(G) ® W(H) is convexoid.

Both adjacency operators A(G) and A{H) are not always convexoid 

even if the Cartesian product of A(G) and A(ff) is convexoid. Now we 

shall give an example as follows:

/0 1 0 0 

0 0 10 
o -一> o —> o

G&H: T i , A(G《H)= q o o J
0000 

\1 0 0 0

Example 3.6. Let G and H be the following graphs-

G：。-。，4(G) =(? 3，

O /0 1 0\

H ： / = 0 0 1 ,

o«—o y 1 0 0 /

0 0\ 

0 0 

0 0 

1 0 

0 1 

0 0/

Then A(H) is a normal adjacency operator and so is convex

oid. Thus we easily see that is the interior and the boundary 

of the equilateral triangle whose vertices axe b(H) = (1,^;,cu2} where 

3 =二母冬.
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It follows that W(H) = CoY[n(H) and W(G) = {入 . |시 M 打 

C Thus we have

W(G ㊉ H)=宓(W(G) U = CoJJ(H)

n

= &(II(G) 이1(H)) = Go[J(G ® H). 

n n n

Therefore 4(G) ® A((if) is a convexoid operator but X(G) is not con- 

vexoid.

Fujii, Sas aka and Watatani [2] showed the following :

LEMMA 3.7. Let 4(G) be a hyponormal adjacency operator for a 

graph G. Then there does not exist a non-trivial sink of G.

THEOREM 3.8 Let A(G) and A(H)和 hypari^mud-ad^acericsj op

erators for a graphs G and H, respectively. Then

(i) A(G) ®」4(H) is hyponormal,

(ii) There does not exits a non-trwtal sink of G ® H, and

(iii) The equality in (3) holds.

PROOF, (i) If A(G) and A(H) are hyponormal, then we have

((Q4(G) ® ® 4(H)) — (X(G) ®，4(H))(,4(G) ® A(H))*)

%, ®e7niev(X)翊)=(Q4(G)*,4(G) ® A(HyA(H))ev ® ew,er ® ell})

一((4(G)4(G)* ® A(H)A(HY)ev ® ew, ® ew) 

=(A(G)\4(GH, e“)Q4(H)七4(H)%,")

—(0(G)4(G)* 知％,)(*(H)4(H)*"")

= ||4(G)€시|2|M(H)e시|2 - ||&G)*e"|'2||&H)*e打2 

> 0

Thus A(G) ® A(H) is hyponornaal.

(ii) It follows from Lemma 3.7 that there are not non-trivial sinks v 

and w of G and H. respectively.
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Assume that there exists a non-trivial sink v ® w oi G ® H. Then 

we have

((C4(G) ® 4(H))*Q4(G) ® 4(H)) — (.4(G) ®，4(H))(，4(G) ® .4(7/))*)) 

ev®ew,ev®ew) = \\A(G)ev\\2\\A(H)ew\\2 — ||&G)*e 시 2||&H)*e 시卩 

=d+ (v)2d+(w)2 — d~ (y)2d~ (w)2 

=-d~(v)2d~(wf < 0,

by the definition of non-trivial sink. Thus A(G) ® 4(H) is not hy- 

ponornial.

(iii) It follows from (i) that 4(G) ® X(/f) is convexoid. Thus we 

have W{G®H) = C 이[JG ® H) = Co([£(G) ・ [丄(归)).

COROLLARY 3.9. Let A(G} and be hyponorrnal adjacency op

erators for graphs G and H, respectively. Then

(i) A(G)命-4(丑)vs hyponorrnal,

(ii) There does not exist a non-trivial sink oj G ® H, and

(iii) The equality W(G ® H) = CoY[n(G ® H) holds

PROOF (i) If A(G) and A(H) are hyponorrnal, then we have

((Q4(G)㊉，4(H))*Q4(G) © 4(H)) -(4(G) ®，4(H))(,4(G) © &H))*)) 

ev®ew,ev®ew) = (4(G)L4(G)% 弓)+

-Q4(G)，(G)*es%) — (4(H)4(H)WsM) 

= ll&G)히|2 + ||,4(H)q,||2 - ||,4(G)*히|2 — 

> 0.

Thus A(G) © A(H) is hyponormal.

(ii) Assume that exists a non-trivial sink v oi G ® H. Then we 

have

(((3(G)㊉ 4(H))*Q4(G) © A(H)) 一 (A(G) © A(H))(A(G) © A(H))*)) 

ev®ew,ev®ew) = |M(G)e„||2 + M(H)e시卩 - (||A(G)*e(,||2 + ||，4(H)*e시 

=d*(u)2 + d*%)2 —(矿(°)2 十 d-(w)2) 

=—(厂(°)2 + 衫-(初)2) < 0.
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Thus X(G) ® is not hyponormal.

(iii) Since A(G) ® is hyponormal, A(G)㊉ A(H) is convexoid.

It follows from Lemma 3.1 that the equality W(G ® H) — Co (G®

H) holds.

From Theorem 3.8 we can easily see the following,

COROLLARY 3.10 Let A(G) and /(G)* be hyponormal adjacency 

operators. Then A(G) is normally symmetric and so A(G) ls normal 

adjacency operator.
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