East Asian Math J 16(2000), No 1, pp 49-55

CONDITIONS IMPLYING NORMALITY

AN-HYUN KIM

ABSTRACT In this paper we find some classes of operators implying normality. The main result is as follows. If T is restriction-convexoid and is reduced by each of its eigenspaces corresponding to isolated eigenvalues, which is a class including hyponormal operators and if $\sigma(T)$ is countable then T is diagonal and normal

1.Introduction

Throughout this paper let \mathcal{H} denote an infinite dimensional separable Hilbert space Let $\mathcal{L}(\mathcal{H})$ denote the set of bounded linear operators on \mathcal{H} . If $T \in \mathcal{L}(\mathcal{H})$, write N(T) and R(T) for the null space and range of T; $\sigma(T)$ for the spectrum of T; $\pi_0(T)$ for the set of eigenvalues of TRecall ([6],[9]) that $T \in \mathcal{L}(\mathcal{H})$ is called *regular* if there is an operator $T' \in \mathcal{L}(\mathcal{H})$ for which T = TT'T. It is familiar that if T is regular then T has closed range and that its converse is also true in the Hilbert space setting An operator $T \in \mathcal{L}(\mathcal{H})$ is called *Fredholm* if it has closed range R(T) with finite dimensional null space and with its range of finite co-dimension. An operator $T \in \mathcal{L}(\mathcal{H})$ is called *Browder* if T is Fredholm and $T - \lambda I$ is invertible for sufficiently small $\lambda \neq 0$ in $\mathbb{C}([6])$ The *index* of a Fredholm operator $T \in \mathcal{L}(\mathcal{H})$ is given by

 $\operatorname{ind}(T) = \operatorname{dim} N(T) - \operatorname{dim} \mathcal{H}/R(T).$

Received November 25, 1999, Revised April 10, 2000

¹⁹⁹¹ Mathematics Subject Classification 47A10, 47A53

Key words and phrases Fredholm, normal restriction-convexoid, reduction- (G_1) reguloid operators.

The essential spectrum $\sigma_e(T)$ and the Browder spectrum $\sigma_b(T)$ of $T \in \mathcal{L}(\mathcal{H})$ are defined by ([1], [2], [3], [7])

 $\sigma_e(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Fredholm}\},\$

 $\sigma_b(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Browder}\}.$

Evidently([6], [7], [10])

$$\sigma_e(T) \subseteq \sigma_b(T) = \sigma_e(T) \cup \operatorname{acc} \sigma(T),$$

where we write $\operatorname{acc} \mathbf{K}$ for the accumulation points of $\mathbf{K} \subset \mathbb{C}$. If we write

$$p_{00}(T) := \sigma(T) \setminus \sigma_b(T)$$

for the *Riesz point* of T([6], [9]]), then

$$iso\sigma(T) \setminus \sigma_e(T) = p_{00}(T).$$

If $T \in \mathcal{L}(\mathcal{H})$, write r(T) for the spectral radius of T. It is familiar that $r(T) \leq ||T||; \lambda \in \pi_0(T)$ is called normal if also $\overline{\lambda} \in \pi_0(T^*)$ and the corresponding eigenspaces are equal, i.e., $N(T - \lambda I) = N(T^* - \lambda I)$ λI). Such a subspaces reduces T, and the restriction of T is trivially normal([3]). An operator $T \in \mathcal{L}(\mathcal{H})$ is called *normaloid* if r(T) = ||T||and *isoloid* if iso $\sigma(T) \subseteq \pi_0(T)$. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to satisfy condition (G₁) if $(T - \lambda I)^{-1}$ is normaloid for all $\lambda \notin \sigma(T)$. If $T \in \mathcal{L}(\mathcal{H})$, write W(T) for the numerical range of T. It is also familar that W(T) is convex and conv $\sigma(T) \subseteq clW(T)$. An operator T is convexord if $\operatorname{conv}\sigma(T) = \operatorname{cl}W(T)$. An operator $T \in \mathcal{L}(\mathcal{H})$ is called regular ([7]) if $T - \lambda I$ is regular for each $\lambda \in iso \sigma(T)$ and will be called *closoid* if $R(T - \lambda I)$ is closed for each $\lambda \in iso\sigma(T)$. Let P be a property of operators. We say that an operator T is restriction-P if the restriction of T to every invariant subspaces has property P and that T is reduction-P if every direct summand of T has property P. Evidently. restriction- $P \Rightarrow$ reduction-P. It is well known that if $T \in \mathcal{L}(\mathcal{H})$ then we have ([2], [3]):

> $(G_1) \Rightarrow$ convexoid and isoloid; seminormal \implies reduction- $(G_1) \implies$ reduction-isoloid; hyponormal \implies restriction-convexoid.

50

REMARK. The restriction of an operator with (G_1) -property fails to have the (G_1) -property on the invariant subspace: for example, let T_1 be an operator on l_2 with the matrix $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, which is nilpotent. Let T_2 be the bounded operator defined on \mathcal{H} with a countable basis $\{e_i\}_{i=1}^{\infty}$ by $T_2e_i = \alpha_ie_i$ and where α_i are such that $\min_i |\lambda - \alpha_i| < |\lambda|^2$ for all $\lambda, |\lambda| < 1$. Then the operator $T = T_1 \oplus T_2$ has the (G_1) property and clearly nonnormal. Note that seminormal operators are reduction-convexoid, but they may not be restriction-convexoid. for example consider the backward shift U^* on l_2 , where U is the unilateral shift(cf [3]). Thus the replacement of "reduction-" by "restriction-" is very stringent. If $T \in \mathcal{L}(\mathcal{H})$ and we define P_F through Riesz functional calculus

$$P_F = \frac{1}{2\pi i} \int_{\gamma} (\lambda - T)^{-1} d\lambda,$$

where F is that isolated part of $\sigma(T)$ and γ is a Cauchy contour containing F. then P_F is a projection and we can decompose T into $T = T_1 \oplus T_2$ such that $\sigma(T_1) = F$ and $\sigma(T_2) = \sigma(T) \setminus F$, which is called the *spectral* projection([6])

2. Conditions implying normality

We begin with:

LEMMA 2.1 If $T \in \mathcal{L}(\mathcal{H})$ is restriction-convexoid then T is isoloid.

PROOF. Let λ_0 be an isolated point of $\sigma(T)$ and let D_{ϵ} be a circle with the center at λ_0 and radius ϵ so that $\{z : |\lambda - \lambda_0| \le \epsilon\} \cap \sigma(T) = \{\lambda_0\}$. We define now the projection P_{λ_0} (the spectral projection at $\lambda_0 \in \mathbb{C}$) by the formula

$$P_{\lambda_0} = \frac{1}{2\pi} \int_{D_c} (\lambda - T)^{-1} d\lambda$$

Then $P_{\lambda_0}\mathcal{H}$ is an invariant subspace of T. Since the spectrum of the restriction of T to this subspace is $\{\lambda_0\}$ and the restriction is convexoid $\operatorname{conv}\sigma(T) = \operatorname{cl}W(T) = \{\lambda_0\}$; thus it is of the form $\lambda_0 I|_{P_{\lambda_0}}$. i.e., $\lambda_0 \in \pi_0(T)$. This completes the proof.

LEMMA 2.2. If $T \in \mathcal{L}(\mathcal{H})$ then (2.2.1) T satisfies $(G_1) \implies T$ is regulard $\implies T$ is closed $\implies T$ is isolaid.

and

$(2.2.2) \qquad restriction-convexoid \implies restriction-regulard.$

PROOF. The first implication of (2.2.1) is known from [8, Theorem 14]. For the second implication, suppose $T \in \mathcal{L}(\mathcal{H})$ is reguloid and $\lambda \in iso \sigma(T)$. Then $T - \lambda I$ is regular; thus $R(T - \lambda I)$ is complemented: thus it is closed. For the third implication of (2.2.1), suppose T is closoid and $\lambda \in iso\sigma(T)$. Then we claim that $\lambda \in \pi_0(T)$. Assume to the contrary that $T - \lambda I$ is one-one. Then since by assumption $T - \lambda I$ is left invertible (cf. [6. (3.8.3.12)]), so that λ cannot lie on the boundary of $\sigma(T)$. This contradicts to the fact that $\lambda \in iso \sigma(T)$. For (2.2.2), suppose T is restriction-convexoid and \mathfrak{M} is an invariant subspace of T. Write $S := T | \mathfrak{M}$. Then S is also restriction-convexoid. Suppose $\lambda \in iso\sigma(S)$. Observe that if T is convexoid then so is aT + bI for any $a, b \in \mathbb{C}$. Thus we may write S in place of $S - \lambda I$ and assume $\lambda = 0$. Using the spectral projection at $0 \in \mathbb{C}$ we can write $S = \begin{pmatrix} S_1 & 0 \\ 0 & S_2 \end{pmatrix}$, where $\sigma(S_1) = \{0\}$ and $\sigma(S_2) = \sigma(S) \setminus \{0\}$. Since by assumption, S_1 is convexoid it follows that $W(S_1) = \operatorname{conv}\sigma(S_1) = \{0\}$, and hence $S_1 = 0$ Thus we have

$$S=egin{pmatrix} 0&0\0&S_2 \end{pmatrix}=SS'S \quad ext{with} \quad S'=egin{pmatrix} 0&0\0&S_2^{-1} \end{pmatrix},$$

which says that S is regular, and therefore T is restriction-reguloid(:thus. we recapture Lemma 2.1).

In 1970, S.Berberian raised the following question: if T is restrictionconvexoid and $\sigma(T)$ is countable, is T normal? We now give a partial answer.

52

THEOREM 2.3. If T is restriction-convexoid and is reduced by each of its eigenspaces corresponding to isolated eigenspaces and $\sigma(T)$ is countable then T is diagonal and normal

PROOF. Suppose T is restriction-convexoid and is reduced by each of its eigenspaces corresponding to isolated eigenspaces and $\sigma(T)$ is countable. Let δ be the set of all normal eigenvalues of T. i.e.

$$\delta = \{\lambda \in \pi_0(T) : N(T - \lambda I) = N(T^* - \overline{\lambda}I)\}$$

We first claim that $\delta \neq \emptyset$. Since $\sigma(T)$ is countable there exists a point $\lambda \in iso\sigma(T)$, so that $\lambda \in \pi_0(T)$ because by Lemma2.2(in general, restriction- $P \Rightarrow P$). T is isoloid. Using the spectral projection at $\lambda \in \mathbb{C}$ we can represent T as the direct sum

$$T = R \oplus S$$
, where $\sigma(R) = \pi_0(R) = \{\lambda\}$ and $\sigma(S) = \sigma(T) \setminus \{\lambda\}$

Since by assumption R is convexoid we have that $W(R) = \operatorname{conv}\{\lambda\} = \{\lambda\}$ and thus $\lambda \in \pi_0(R) \cap \partial W(R)$. Then an argument of Bouldin[4.Lemma1] shows that λ is a normal eigenvalue of R. Since T is reduced by each of its eigenspaces corresponding to isolated eigenspaces, we can write $T^* = R^* \oplus S^*$. But since $S^* - \overline{\lambda}I$ is invertible, it follows

$$N(T - \lambda I) = N(R - \lambda I) = N(R^* - \overline{\lambda}I) = N(T^* - \overline{\lambda}I)$$

which implies that $\delta \neq \emptyset$. Now if \mathfrak{M} is the closed linear span of the eigenspaces $N(T - \lambda I)(\lambda \in \delta)$, then \mathfrak{M} reduces T Write

$$T_1:=T|\mathfrak{M} \quad ext{and} \quad T_2:=T|\mathfrak{M}^\perp.$$

Then we have ([2], [9])

- (i) T_1 is normal and diagonal;
- (ii) $\pi_0(T_1) = \delta;$
- (iii) $\sigma(T_1) = \operatorname{cl} \delta$:
- (iv) $\pi_0(T_2) = \pi_0(T) \setminus \delta$.

AN-HYUN KIM

Thus it will suffice to show that $\mathfrak{M}^{\perp} = \{0\}$. Assume to the contrary that $\mathfrak{M}^{\perp} \neq \{0\}$. Then since $\sigma(T_2)$ is also countable there exists a point $\mu \in iso\sigma(T_2)$. Since by assumption T_2 is restriction-convexoid and hence by Lemma2.2 isoloid, it follows that $\mu \in \pi_0(T_2)$ and $\mu \notin \delta$. Again using the spectral projection at $\mu \in \mathbb{C}$ we can decompose T_2 as the direct sum

$$T_2 = T_3 \oplus T_4,$$

where $\sigma(T_3) = \pi_0(T_3) = \{\mu\}$ and $\sigma(T_4) = \sigma(T_2) \setminus \{\mu\}$. Since again T_3 is convexoid, the same argument as the above gives that μ is an isolated normal eigenvalue of T_3 and further by assumption $T_2^* = T_3^* \oplus T_4^*$. But since $T_1 - \mu I$ and $T_4 - \mu I$ are both one-one we have

$$N(T - \mu I) = N(T_3 - \mu I) = N(T_3^* - \overline{\mu}I)$$

Further since $\pi_0(T_1^*) = \overline{\delta}$ and $\overline{\mu} \notin \sigma(T_4^*)$, it follows that $N(T^* - \overline{\mu}I) = N(T_3^* - \overline{\mu}I)$, and therefore $N(T - \mu I) = N(T^* - \overline{\mu}I) = N(T_3^* - \overline{\mu}I)$, which implies that $\mu \in \delta$, giving a contradiction. This completes the proof.

We have been unable to answer if restriction-convexoid operators are reduced by each of its eigenspaces corresponding to isolated eigenvalues. If the answer were affirmative then we would answer Berberian question affirmatively.

COROLLARY 2.4. If T is restriction-convexoid and is reduced by each of its eigenspaces corresponding to isolated eigenspaces and $\sigma_e(T) = \{0\}$ then T is compact and normal.

PROOF. Since $\sigma_e(T) = \{0\}$ and $\sigma(T) \subset \{0\} \cup p_{00}(T)$. $\sigma(T)$ is countable. By Theorem 2.3, T is normal. By the argument of Theorem 2.3, $T = T_1 \oplus \{0\}$; thus $\sigma(T) = \sigma(T_1) \cup \sigma\{0\} = \pi_0(T)$, thus $\pi_0(T) \setminus \{0\} = iso\sigma(T) \setminus \sigma_e(T) = p_{00}(T)$. Therefore the nonzero eigenvalues are *Riesz* points, so that they are either finite or form a null sequence, which implies T is compact. COROLLARY 2.5. If T is restriction-conversid and is reduced by each of its eigenspaces corresponding to isolated eigenspaces and all but a finite number of elements of $\sigma(T)$ are real, then T is normal.

PROOF. We can decompose $T = T_1 \oplus T_2$ as in Theorem 2.3, where T_1 is normal. Since $\sigma(T_2)$ is real and T_2 is convexied by hypotheses. T_2 is hermitian; thus T is normal.

REFERENCES

- S.K. Berberian, An extension of Weyl's theorem to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273-279
- [2] S.K. Berberian, The Weyl spectrum of an operator, Indiana Univ. Math. J. 20 (1970), 529-544
- [3] S.K. Berberian, Some conditions on an operator implying normality Math.Ann 184 (1970), 188-192
- R.Bouldin, Numerical range for certain classes of operators, Proc. Amer. Math. Soc. 34 (1972), 203-206
- [5] R.E. Harte, Fredholm, Weyl and Browder theory, Proc. Royal Irish Acad. 85A(2) (1985), 151-176
- R.E. Harte, Invertibility and singularity for bounded linear operators, Dekker, New York, 1988
- [7] R E Harte and W Y Lee, Another note on Weyl's theorem, Trans Amer. Math Soc. 349 (1997), 2115-2124.
- [8] V Istratescu, Weyl's theorem for a class of operators Rev. Roum Math Pures Appl. 13 (1968), 1103-1105
- [9] A H.Kim and S U Yoo, Weyl's theorem for isoloid and regulard operators, Comm Korean Math. Soc. 14 (1999), 179–188.
- [10] W Y. Lee and H Y. Lee, On Weyl s theorem, Math. Japon. 39 (1994) 545-548

Department of Mathematics Changwon National University Changwon 641-773, Korea *E-mail*: ahkim@sarim.changwon.ac.kr