CONDITIONS IMPLYING NORMALITY

An-Hyun Kim

Abstract

In the paper we find some classes of operotors mplyug nunnaty The man result is as follows If T is restriction-convexold and is reduced by each of its eigenspaces contesponding to isolated engenvalues. which is a class meluding hyponormal operators and if $\sigma(T)$ is countable ther T is diagonal and normal

1.Introduction

Throughout this paper let \mathcal{H} denote an infinite dimenslonal separable Hilbert space Let $\mathcal{L}(\mathcal{H})$ denote the set of bounded linear operators on \mathcal{H}. If $T \in \mathcal{L}(\mathcal{H})$, write $N(T)$ and $R(T)$ for the null space and range of $T ; \sigma(T)$ for the spectrum of $T ; \pi_{0}(T)$ for the set of eigenvalues of T Recall ($[6],[9])$ that $T \in \mathcal{L}(\mathcal{H})$ is called regular if there is an operator $T^{\prime} \in \mathcal{L}(\mathcal{H})$ for which $T=T^{\prime} T^{\prime} T$. It is familiar that if T is regular then ' T has closed range and that its converse is also true in the Hilbert space setting An operator $T \in \mathcal{L}(\mathcal{H})$ is called Fredholm if it has closed range $R(T)$ with finite dimensional null space and with its range of finite co-dimension. An operator $T \in \mathcal{L}(\mathcal{H})$ is called Browder if T is Fredholm and $T-\lambda I$ is invertible for sufficiently small $\lambda \neq 0$ in $\mathbb{C}\left({ }^{\prime} 6{ }^{1}\right)$ The index of a Fredholm operator $T \in \mathcal{L}(\mathcal{H})$ is given by

$$
\operatorname{ind}(T)=\operatorname{dim} N(T)-\operatorname{dim} \mathcal{H} / R(T)
$$

Recelved Vovernber 25 1999 Revised April 10, 2000
1991 Mathendites Sutpeet Classification 47A10, 47A53
Key words and phrases Fiedholm, nomal restriction-convexond, reduction$\left(G_{1}\right)$ reguloid opetators.

The essential spectrum $\sigma_{e}(T)$ and the Browder spectrum $\sigma_{b}(T)$ of $T \in$ $\mathcal{L}(\mathcal{H})$ are defined by $([1],[2],[3],[7])$

$$
\begin{aligned}
\sigma_{e}(T) & =\{\lambda \in \mathbb{C}: T-\lambda I \quad \text { is not Fredholm }\} \\
\sigma_{b}(T) & =\{\lambda \in \mathbb{C}: T-\lambda I \quad \text { is not Browder }\}
\end{aligned}
$$

Evidently ([6],[7],[10])

$$
\sigma_{e}(T) \subseteq \sigma_{b}(T)=\sigma_{e}(T) \cup \operatorname{acc} \sigma(T)
$$

where we write accK for the accumulation points of $K \subset \mathbb{C}$. If we write

$$
p_{00}(T):=\sigma(T) \backslash \sigma_{b}(T)
$$

for the Ruesz pount of $T([6],[9]])$, then

$$
\operatorname{iso\sigma }(T) \backslash \sigma_{e}(T)=p_{00}(T)
$$

If $T \in \mathcal{L}(\mathcal{H})$, write $T(T)$ for the spectral radius of T it is familiar that $r(T) \leq\|T\| ; \lambda \in \pi_{0}(T)$ is called normal if also $\bar{\lambda} \in \pi_{0}\left(T^{*}\right)$ and the corresponding eigenspaces are equal, i.e., $N(T-\lambda I)=N\left(T^{*}-\right.$ $\bar{\lambda} I)$. Such a subspaces reduces T. and the restriction of T is trivially normal($[3])$. An operator $T \in \mathcal{L}(\mathcal{H})$ is called normalond if $r(T)=\|T\|$ and zsolovd if iso $\sigma(T) \subseteq \pi_{0}(T)$. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to satisfy condition $\left(G_{1}\right)$ if $(T-\lambda I)^{-1}$ is normaloid for all $\lambda \notin \sigma(T)$. If $T \in \mathcal{L}(\mathcal{H})$. write $W(T)$ for the numerical range of T. It is also familar that $W(T)$ is convex and conv $\sigma(T) \subseteq \mathrm{cl} W(T)$. An operator T is convexotd if $\operatorname{conv} \sigma(T)=\operatorname{cl} W(T)$. An operator $T \in \mathcal{L}(\mathcal{H})$ is called regulozd ([7]) if $T-\lambda I$ is regular for each $\lambda \in$ iso $\sigma(T)$ and will be called closozd if $R(T-\lambda I)$ is closed for each $\lambda \in \operatorname{iso} \sigma(T)$. Let P be a property of operators. We say that an operator T is restruction- P if the restriction of T to every invariant subspaces has property P and that T is reduction- P if every direct summand of T has property P. Evidently. restriction $-P \Rightarrow$ reduction- P. It is well known that if $T^{\prime} \in \mathcal{L}(\mathcal{H})$ then we have ([2],[3]):
$\left(G_{1}\right) \Rightarrow$ convexoid and isoloid;
seminormal \Longrightarrow reduction- $\left(G_{1}\right) \Longrightarrow$ reduction-isoloid;
hyponormal \Longrightarrow restriction-convexoid.

Remark. The restriction of an operator with (G_{1})-property fails to have the $\left(G_{1}\right)$-property on the invariant subspace: for example, let T_{1} be an operator on l_{2} with the matrix $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, which is nilpotent. Let T_{2} be the bounded operator defined on \mathcal{H} with a countable basis $\left\{e_{2}\right\}_{2=1}^{\infty}$ by $T_{2} e_{2}=\alpha_{2} e_{2}$ and where α_{2} are such that $\min _{2}\left|\lambda-\alpha_{2}\right|<|\lambda|^{2}$ for all $\lambda,|\lambda|<1$. Then the operator $T=T_{1} \oplus T_{2}$ has the (G_{1})property and clearly nonnormal. Note that seminormal operators are reduction-convexoid. but they may not be restriction-convexoid. for example consider the backward shitt U^{*} on l_{2}, where U is the unilateral shift (cf [3]). Thus the replacement of "reduction-" by "restriction-" is very stringent. If $T \in \mathcal{L}(\mathcal{H})$ and we define P_{F} through Riesz functional calculus

$$
P_{F}=\frac{1}{2 \pi \imath} \int_{\gamma}(\lambda-T)^{-1} d \lambda
$$

where F is that isolated part of $\sigma(T)$ and γ is a Cauchy contour containing F. then P_{F} is a projection and we can decompose T into $T=T_{1} \oplus T_{2}$ such that $\sigma\left(T_{1}\right)=F$ and $\sigma\left(T_{2}\right)=\sigma(T) \backslash F$. which is called the spectral projection($\left[6{ }_{j}^{1}\right)$

2. Conditions implying normality

We begin with:
Lemma 2.1 If $T \in \mathcal{L}(\mathcal{H})$ is restraction-convetoud then T is usolotd.
Proof. Let λ_{0} be an isolated point of $\sigma(T)$ and let D_{ϵ} be a circle with the center at λ_{0} and radius c so that $\left\{z \cdot\left|\lambda-\lambda_{0}\right| \leq \epsilon\right\} \cap \sigma(T)=$ $\left\{\lambda_{0}\right\}$. We define now the projection $P_{\lambda_{0}}$ (the spectral projection at $\lambda_{0} \in \mathbb{C}$) by the formula

$$
P_{\lambda_{0}}=\frac{1}{2 \pi} \int_{D_{v}}(\lambda-T)^{-1} d \lambda
$$

Then $P_{\lambda_{0}} \mathcal{H}$ is an invariant subspace of T. Since the spectrum of the restriction of T to this subspace is $\left\{\lambda_{0}\right\}$ and the restriction is convexoid $\operatorname{conv} \sigma(T)=\operatorname{cl} W(T)=\left\{\lambda_{0}\right\}$; thus it is of the form $\left.\lambda_{0} I\right|_{P_{\lambda_{0}}}$. i.e. $\lambda_{0} \in$ $\pi_{0}(T)$. This completes the proof.

Lemma 2.2. If $T \in \mathcal{L}(\mathcal{H})$ then
(2:2.1)
T satisfies $\left(G_{1}\right) \Longrightarrow T$ is regulond $\Longrightarrow T$ is closord $\Longrightarrow T$ is isolotd. and

$$
\begin{equation*}
\text { restructıon-convexovd } \Longrightarrow \text { restraction-reguloud. } \tag{2.2.2}
\end{equation*}
$$

Proof. The first implication of (2.2.1) is known from [8, Theorem 14]. For the second implication, suppose $T \in \mathcal{L}(\mathcal{H})$ is reguloid and $\lambda \in$ iso $\sigma(T)$. Then $T-\lambda I$ is regular; thus $R(T-\lambda I)$ is complemented: thus it is closed. For the third implication (2.2.1). suppose T is closoid and $\lambda \in \operatorname{iso\sigma }(T)$. Then we claim that $\lambda \in \pi_{0}(T)$. Assume to the contrary that $T-\lambda I$ is one-one. Then since by assumption $T-\lambda I$ is left invertible (cf. [6. (3.8.3.12)]), so that λ cannot lie on the boundary of $\sigma(T)$. This contradicts to the fact that $\lambda \in$ iso $\sigma(T)$. For (2.2.2), suppose T is restriction-convexoid and \mathfrak{M} is an invariant subspace of T. Write $S:=T \mid M$. Then S is also restriction-convexoid. Suppose $\lambda \in \operatorname{iso\sigma }(S)$. Observe that if T is convexoid then so is $a T+b I$ for any $a, b \in \mathbb{C}$. Thus we may write S in place of $S-\lambda I$ and assume $\lambda=0$. Using the spectral projection at $0 \in \mathbb{C}$ we can write $S=\left(\begin{array}{cc}S_{1} & 0 \\ 0 & S_{2}\end{array}\right)$, where $\sigma\left(S_{1}\right)=\{0\}$ and $\sigma\left(S_{2}\right)=\sigma(S) \backslash\{0\}$. Since by assumption, S_{1} is convexoid it follows that $W\left(S_{1}\right)=\operatorname{conv} \sigma\left(S_{1}\right)=\{0\}$. and hence $S_{1}=0$ Thus we have

$$
S=\left(\begin{array}{cc}
0 & 0 \\
0 & S_{2}
\end{array}\right)=S S^{\prime} S \quad \text { with } \quad S^{\prime}=\left(\begin{array}{cc}
0 & 0 \\
0 & S_{2}^{-1}
\end{array}\right)
$$

which says that S is regular, and therefore T is restriction-reguloid(:thus. we recapture Lemma 2.1).

In 1970, S.Berberian raised the following question: if T is restrictionconvexoid and $\sigma(T)$ is countable, is T normal? We now give a partial answer.

THEOREM 2.3. If T is restriction-convexoud and is reduced by each of ats eigenspaces correspondang to asolated eigenspaces and $\sigma(T)$ is countable then T is duagoral and normal

Proof. Suppose T is restriction-convexoid and is reduced by each of its eigenspaces corresponding to isolated eigenspaces and $\sigma(T)$ is countable. Let δ be the set of all normal eigenvalues of T ' i.e .

$$
\delta=\left\{\lambda \in \pi_{0}(T): N(T-\lambda I)=N\left(T^{*}-\bar{\lambda} I\right)\right\}
$$

We first claim that $\delta \neq 0$. Since $\sigma(T)$ is countable there exists a point $\lambda \in \operatorname{iso} \sigma(T)$, so that $\lambda \in \pi_{0}(T)$ because by Lemma2.2(in general, restriction- $P \Rightarrow P) . T$ is isoloid. Using the spectral projection at $\lambda \in \mathbb{C}$ we can represent T as the direct sum
$\bar{I}=\bar{R} \bar{\oplus} S, \quad$ where $\quad \sigma(R)=\pi_{0}(\bar{R})=\{\lambda\} \quad$ and $\quad \sigma(S)=\sigma(T),\{\lambda\}$
Since by assumption R is convexoid we have that $W(R)=\operatorname{conv}\{\lambda\}=$ $\{\lambda\}$ and thus $\lambda \in \pi_{0}(R) \cap \partial W(R)$.Then an argument of Bouldini4.Lemmal. shows that λ is a normal eigenvalue of R. Since T is reduced by each of its eigenspaces corresponding to isolated eigenspaces, we can write $T^{*}=R^{*} \oplus S^{*}$. But since $S^{*}-\bar{\lambda} I$ is invertible. it follows

$$
N(T-\lambda I)=N(R-\lambda I)=N\left(R^{*}-\bar{\lambda} I\right)=N\left(T^{*}-\bar{\lambda} I\right)
$$

which implies that $\delta \neq \emptyset$. Now if \mathfrak{M} is the closed linear span of the eigenspaces $N(T-\lambda I)(\lambda \in \delta)$, then \mathfrak{M} reduces T Write

$$
T_{1}:=T \mid \mathfrak{M} \quad \text { and } \quad T_{2} \cdot=T \mid \mathfrak{M}^{\perp}
$$

Then we have $\left(\left[2_{3},[9]\right)\right.$
(i) T_{1} is normal and diagonal;
(ii) $\pi_{0}\left(T_{1}\right)=\delta$;
(iii) $\sigma\left(T_{1}\right)=\operatorname{cl} \delta$:
(iv) $\pi_{0}\left(T_{2}\right)=\pi_{0}(T) \backslash \delta$.

Thus it will suffice to show that $\mathfrak{M}^{\perp}=\{0\}$. Assume to the contrary that $\mathfrak{M}^{\perp} \neq\{0\}$. Then since $\sigma\left(T_{2}\right)$ is also countable there exists a point $\mu \in$ iso $\sigma\left(T_{2}\right)$. Since by assumption T_{2} is restriction-convexoid and hence by Lemma 2.2 isoloid. it follows that $\mu \in \pi_{0}\left(T_{2}\right)$ and $\mu \notin \delta$. Again using the spectral projection at $\mu \in \mathbb{C}$ we can decompose T_{2} as the direct sum

$$
T_{2}=T_{3} \oplus T_{4},
$$

where $\sigma\left(T_{3}\right)=\pi_{0}\left(T_{3}\right)=\{\mu\}$ and $\sigma\left(T_{4}\right)=\sigma\left(T_{2}\right) \backslash\{\mu\}$. Since again T_{3} is convexoid, the same argument as the above gives that μ is an isolated normal eigenvalue of T_{3} and further by assumption $T_{2}^{*}=T_{3}^{*} \oplus T_{4}^{*}$. But since $T_{1}-\mu I$ and $T_{4}-\mu I$ are both one-one we have

$$
N(T-\mu I)=N\left(T_{3}-\mu I\right)=N\left(T_{3}^{*}-\bar{\mu} I\right)
$$

Further since $\pi_{0}\left(T_{1}^{*}\right)=\bar{\delta}$ and $\bar{\mu} \notin \sigma\left(T_{1}^{*}\right)$. it follows that $N\left(T^{*}-\bar{\mu} I\right)=$ $N\left(T_{3}^{*}-\bar{\mu} I\right)$, and therefore $N(T-\mu I)=N\left(T^{*}-\bar{\mu} I\right)=N\left(T_{3}^{*}-\bar{\mu} I\right)$, which implies that $\mu \in \delta$, giving a contradiction. This completes the proof.

We have been unable to answer if restriction-convexoid operators are reduced by each of its eigenspaces corresponding to isolated eigenvalues. If the answer were affirmative then we would answer Berberian question affirmatively.

Corollary 2.4. If T as restraction-convexold and is reduced by each of ıts eigenspaces corresponding to tsolated etgenspaces and $\sigma_{e}(T)=$ $\{0\}$ then T is compact and normal.

Proof. Since $\sigma_{e}(T)=\{0\}$ and $\sigma(T) \subset\{0\} \cup p_{00}(T) . \sigma(T)$ is countable. By Theorem 2.3, T is normal. By the argument of Theorem 2.3, $T=T_{1} \oplus\{0\}$; thus $\sigma(T)=\sigma\left(T_{1}\right) \cup \sigma\{0\}=\pi_{0}(T)$, thus $\pi_{0}(T) \backslash\{0\}=\operatorname{iso} \sigma(T) \backslash \sigma_{e}(T)=p_{00}(T)$. Therefore the nonzero eigenvalues are Ruesz points, so that they are either finite or form a null sequence, which implies T is compact.

Corollary 2.5. If T is restriction-convevoid and is reduced by each of uts evgenspaces corresponding to isolated engenspaces and all but a finte number of elements of $\sigma(T)$ are real, then T is normal.

Proof. We can decompose $T=T_{1} \oplus T_{2}$ as in Theorem2.3, where T_{1} is normal. Since $\sigma\left(T_{2}\right)$ is real and T_{2} is convexoid by hypotheses. T_{2} is hermitian; thus T is normal.

Reffrences

[1] S.K Berberian, An extenston of Weyl's theorem to a class of not neaxssarily normal operators, Michigan Math J 16 (1969), 273-279
[2] S.K Berberian, The Weyl spectrum of an operator, Indiata liriv Math. J 20 (1970), 529-544
[3] S.K Berberian, Some condutzons on an operator mplyang normalhty Math.Arm 184 (1970), 188-192
(4i R.Bouidin, Numerncal range for certam cidssts of operators, Proc Amer Math Soc 34 (1972), 203-206
[5] R.E Harte, Fredholm, Weyl and Browder theory, Proc. Royal Irish Acad 85A(2) (1985), 151-176
[6] R.E Hate, Invertzbuthty and sangularaty for bounded lineaf operators, Dekket, New York, 1988
[7] R E Harte and W Y Lee, Another note on Wegl's theorem, Trans Amer. Math Soc. 349 (1997), 2115-2124.
18! V Istratescu, Weyl'九 theorem for a class of operator, Rev. Rourn Math Pures Appl. 13 (1968), 1103-1105
[9] A H.Kim and S U Yoo, Weyl's theorem for asolond and reguloud uperator, Comm Korean Math Soc 14 (1999), 179-188.
[10] W Y. Lee and H Y. Lee, On Weyls theorem, Math Japon 39 (1994) 545--548
Department of Mathematics
Changwon National University Changwon 641-773, Korea
E-maul: ahkim@sarim.changwon.ac.kr

