THE INCOMPLETE BETA AND THEIR ASSOCIATED FUNCTIONS

Inhyok Park. Young Joon Cho.
Tae Young Seo and Junesang Choi

Abstract

The authors am at providng some identaties involving the hypergeometric function via some known or presumably new formulas for the incomplete Beta and then assocmated functions Some properties of the Beta and Gamma functions ate also considered

1. Introduction

The incomplete Beta function $B_{x}(\alpha, \beta)$ is defined by

$$
\begin{equation*}
B_{x}(\alpha, \beta):=\int_{0}^{x} t^{\alpha-1}(1-t)^{\beta-1} d t \quad(0<x<1 ; \operatorname{Re}(\alpha)>0) \tag{1.1}
\end{equation*}
$$

whose associated function (as normalized version) is given

$$
\begin{equation*}
I_{x}(\alpha, \beta):=\frac{B_{x}(\alpha, \beta)}{B(\alpha, \beta)}, \tag{1.2}
\end{equation*}
$$

where the Beta function $B(\alpha, \beta)$ is a function of two complex variables α and β, defined by the Eulerian integral of the first kind

$$
\begin{equation*}
B(\alpha, \beta):=\int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} d t \quad(\operatorname{Re}(\alpha)>0 ; \operatorname{Re}(\beta)>0) \tag{1.3}
\end{equation*}
$$

Recelved September 20, 1999. Revised April 5, 2000
1991 Mathematics Subject Classification. Purrary 33C20, Secondary 33C 30.
Key words and phrases. Incomplete Beta and theit associated functions hypergeometric function
which, upon setting $t=\sin ^{2} \theta$, is equivalently written in the form:

$$
\begin{equation*}
B(\alpha, \beta):=2 \int_{0}^{\pi / 2}(\sin \theta)^{2 \alpha-1}(\cos \theta)^{2 \beta-1} d \theta \quad(\operatorname{Re}(\alpha)>0 ; \operatorname{Re}(\beta)>0) \tag{1.4}
\end{equation*}
$$

Note that Choi et al. [1] obtained and proved some interesting known or presumably new identities for the Beta function by introducing another definition via the generalized (or Hurwitz) zeta function. The incomplete Beta function is related to the beta distribution in statistics

The Beta function is closely related to the Gamma function

$$
\begin{equation*}
B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)} \quad(\alpha, \beta \neq 0,-1,-2, \ldots) \tag{1.5}
\end{equation*}
$$

where Γ denotes the well known Gamma function which has several equivalent definitions Some of which are introduced as follows:

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t \quad(\operatorname{Re}(z)>0, \text { L Euler }) \tag{1.6}
\end{equation*}
$$

$$
\Gamma(z)=\lim _{n \rightarrow \infty} \frac{n!n^{z}}{z(z+1)(z+2) \cdots(z+n)}
$$

$$
\begin{equation*}
(z \neq 0,-1,-2, \ldots ; \text { K. F. Gauss }) \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{\Gamma(z)}=z e^{\gamma z} \prod_{k=1}^{\infty}\left[\left(1+\frac{z}{k}\right) \exp \left(-\frac{z}{k}\right)\right] \quad \text { (K. Weierstrass) } \tag{1.8}
\end{equation*}
$$

where γ is the Euler-Mescheroni constant defined by

$$
\begin{equation*}
\gamma=\lim _{n \rightarrow \infty}\left[\sum_{k=1}^{n} \frac{1}{k}-\log n\right] \cong 0.577215664 \ldots \tag{1.9}
\end{equation*}
$$

We summarize some properties of the Gamma function.

$$
\begin{equation*}
\Gamma(z+1)=z \Gamma(z) \tag{1.10}
\end{equation*}
$$

THE INCOMPLETE BETA AND THEIR ASSOCIATED FUNCTIONS 11

$$
\begin{equation*}
\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin \pi z}(z \neq 0, \pm 1, \pm 2, \ldots) \tag{1.11}
\end{equation*}
$$

$$
\begin{equation*}
\Gamma(1)=1, \Gamma(1 / 2)=\sqrt{\pi}, \quad \Gamma(n+1)=n!(n \in \mathbf{N} \cup\{0\}) \tag{1.12}
\end{equation*}
$$

where \mathbf{N} denotes the set of positive integers.
The hypergeometric function ${ }_{2} F_{1}$ is defined by

$$
\begin{equation*}
{ }_{2} F_{1}(a, b, c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!}(c \neq 0,-1,-2, \ldots) \tag{1.13}
\end{equation*}
$$

where the Pochhammer symbol $(\alpha)_{n}$ is defined by. α any complex number.

$$
(\alpha)_{n}=\left\{\begin{array}{cl}
\alpha(\alpha+1) \cdots(\alpha+n-1) & \text { if } n \in \mathbf{N} \tag{1.14}\\
1 & \text { if } n=0
\end{array}\right.
$$

which, in terms of the Gamma functions, we find

$$
\begin{equation*}
(\alpha)_{n}=\frac{\Gamma(\alpha+n)}{\Gamma(\alpha)}(\alpha \neq 0,-1,-2, \ldots) \tag{115}
\end{equation*}
$$

The hypergeometric function ${ }_{2} F_{1}$ is, more precisely. called Gauss:s hypergeometric function after the famous German mathematician Carl Friedrich Gauss (1777-1855) who in the year 1812 introduced this function into analysis and gave the F-notation for it. One of Gauss’s important identities for ${ }_{2} F_{1}$ is the following well-known summation formula. (1.16) ${ }_{2} F_{1}(a, b ; c ; 1)=\frac{\Gamma(c) \Gamma(c-a-b)}{\Gamma(c-a) \Gamma(c-b)}(\operatorname{Re}(c-a-b)>0: c \neq 0,-1,-2, \quad)$

A number of summation theorems for the hypergeometric function (1.13) when z takes on other special values are recorded in various literature

In this note some identities involving ${ }_{2} F_{1}$ are provided by making use of some formulas for the associated $I_{3}(\alpha, \beta)$.
2. Some Identities for ${ }_{2} F_{1}$ via I_{3}

The Maclaurin series of the following function is given by, for any complex number α,

$$
\begin{equation*}
(1+z)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} z^{n} \quad(|z|<1), \tag{2.1}
\end{equation*}
$$

where the generalized binomial coefficient $\binom{\alpha}{n}$ is defined by

$$
\binom{\alpha}{n}:=\left\{\begin{array}{cl}
\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!} & \text { if } n \in \mathbf{N} \tag{2.2}\\
1 & \text { if } n=0,
\end{array}\right.
$$

which is equivalently written in terms of the Pochhammer symbol

$$
\begin{equation*}
\binom{\alpha}{n}=\frac{(-1)^{n}(-\alpha)_{n}}{n!}(n \in \mathbf{N} \cup\{0\}) \tag{2.3}
\end{equation*}
$$

We thus find that

$$
\begin{equation*}
(1-z)^{-\alpha}=\sum_{n=0}^{\infty} \frac{(\alpha)_{n}}{n!} z^{n} \quad(|z|<1) . \tag{2.4}
\end{equation*}
$$

From (1.1) and (1.2), we find that, upon using (2.4) and integration termwise,

$$
\begin{equation*}
I_{x}(\alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha+1) \Gamma(\beta)} x^{\alpha}{ }_{2} F_{1}(\alpha, 1-\beta ; \alpha+1 ; x) . \tag{2.5}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
I_{a}(\alpha, \beta) & =\frac{1}{B(\alpha, \beta)} \int_{0}^{x} t^{\alpha-1}(1-t)^{\beta-1} d t \\
& =\frac{1}{B(\alpha, \beta)} \sum_{n=0}^{\infty} \frac{(1-\beta)_{n}}{n!} \frac{x^{n+\alpha}}{n+\alpha} \\
& =\frac{1}{B(\alpha, \beta)} x^{\alpha} \sum_{n=0}^{\infty} \frac{(1-\beta)_{n}}{n!} \frac{\Gamma(n+\alpha)}{\Gamma(n+\alpha+1)} x^{n},
\end{aligned}
$$

THE INCOMPLETE BETA AND THEIR ASSOCIATED FUNCTIONS 13 which. in view of (1.15), reaches at the desired identity (2.5) (cf. $4, \mathrm{p}$ 128]).

From (12) we find the following identities which are readily verifiable (cf., e.g [3, pp 27-28]; see also [4, pp. 288-290!)

$$
\begin{equation*}
I_{x}(\alpha, \beta)=1-I_{1-x}(\beta, \alpha) \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
I_{x}(\alpha, \beta)=x I_{2}(\alpha-1, \beta)+(1-x) I_{3}(\alpha, \beta-1) \tag{2.7}
\end{equation*}
$$

(2.8) $(\alpha+\beta-\alpha x) J_{J}(\alpha, \beta)=\alpha(1-x) I_{x}(\alpha+1, \beta)+\beta I_{x}(\alpha, \beta+1)$;
(2.9) $\{\alpha+(\beta-\alpha) x\} I_{a}(\alpha, \beta)=\alpha(1-x) I_{x}(\alpha+1, \beta)-\beta x I_{a}(\alpha, \beta-1)$,

$$
\begin{equation*}
(\alpha+\beta) I_{x}(\alpha, \beta)=\alpha I_{x}(\alpha+1, \beta)+\beta I_{x}(\alpha, \beta-1) \tag{2.10}
\end{equation*}
$$

(2.11) $\quad I_{2}(\alpha, \beta)=I_{3}(\alpha-1, \beta+1)-\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta+1)} x^{\alpha-1}(1-x)^{\beta}:$
(2.12) $\quad I_{a}(\alpha, \beta)=I_{a}(\alpha+1 . \beta-1)+\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha+1) \Gamma(\beta)} x^{\alpha \alpha}(1-x)^{, \beta-1}$.

$$
\begin{equation*}
I_{x}(\alpha, \beta)=I_{x}(\alpha+1, \beta)+\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha+1) \Gamma(\beta)} x^{\alpha}(1-x)^{\prime} \tag{2.13}
\end{equation*}
$$

$$
\begin{equation*}
I_{z}(\alpha, \beta)=I_{x}(\alpha, \beta+1)-\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta+1)} x^{\alpha}(1-x)^{\beta} \tag{2.14}
\end{equation*}
$$

$$
\begin{equation*}
(x+\alpha) I_{a}(\alpha, \beta)=x I_{x}(\alpha-1, \beta+1) \perp \alpha I_{a}(\alpha+1, \beta) \tag{215}
\end{equation*}
$$

$$
\begin{equation*}
I_{z}(k, n-k+1)=\sum_{\jmath=k}^{n}\binom{n}{\jmath} x^{\jmath}(1-x)^{n-\jmath}(1 \leq k \leq n) \tag{2.16}
\end{equation*}
$$

one of whose proofs may be given by using the principle of mathematical induction.

Now application (2.5) to the identities (2.6)-(2.15) yields immediately various formulas involving the hypergeometric function as follows: (2.17)

$$
\begin{aligned}
& \beta x_{2}^{\alpha} F_{1}(\alpha, 1-\beta ; \alpha+1 ; x)+\alpha(1-x)_{2}^{\beta} F_{1}(\beta, 1-\alpha ; \beta+1 ; 1-x) \\
& \quad=\frac{\Gamma(\alpha+1) \Gamma(\beta+1)}{\Gamma(\alpha+\beta)}
\end{aligned}
$$

$$
\begin{align*}
& (\alpha+\beta-1)_{2} F_{1}(\alpha, 1-\beta ; \alpha+1 ; x)=\alpha_{2} F_{1}(\alpha-1,1-\beta \cdot \alpha ; x) \tag{2.18}\\
& \quad \div(\beta-1)(1-x)_{2} F_{1}(\alpha, 2-\beta \cdot \alpha+1 ; a):
\end{align*}
$$

$$
\begin{equation*}
(\alpha+1)(\alpha+\beta-\alpha x)_{2} F_{1}(\alpha, 1-\beta ; \alpha+1: u) \tag{2.19}
\end{equation*}
$$

$$
(\alpha+1)(\beta-1)\{\alpha+(\beta-\alpha) x\}_{2} F_{1}(\alpha, 1-\beta ; \alpha+1 ; x)
$$

$$
\begin{equation*}
=\alpha \beta(\beta-1) x(1-x)_{2} F_{1}(\alpha+1,2-\beta ; \alpha+2 ; x) \tag{2.20}
\end{equation*}
$$

$$
+\alpha(\alpha+1) \beta_{2} F_{1}(\alpha-1 .-\beta ; \alpha ; x)
$$

$$
\begin{gather*}
{ }_{2} F_{1}(\alpha, 1-\beta ; \alpha+1 ; x)={ }_{2} F_{1}(\alpha+1,-\beta ; \alpha+1: a) \\
\quad+\frac{\alpha}{\alpha+1}{ }_{2} F_{1}(\alpha+1,1-\beta ; \alpha+2 ; x) \tag{2.21}
\end{gather*}
$$

$$
\begin{align*}
& \beta x_{2} F_{1}(\alpha, 1-\beta ; \alpha+1 ; x) \tag{2.22}\\
& \quad=\alpha_{2} F_{1}(\alpha-1,-\beta ; \alpha ; x)-\alpha(1-x)^{\mu}:
\end{align*}
$$

$$
\begin{align*}
& (\alpha+1)_{2} F_{1}(\alpha, 1-\beta ; \alpha+1 ; x) \tag{2.23}\\
& \quad=(\beta-1) x_{2} F_{1}(\alpha+1,2-\beta ; \alpha+2 ; x)+(\alpha+1)(1-x)^{\beta-1}
\end{align*}
$$

$$
\begin{align*}
& { }_{2} F_{1}(\alpha, 1-\beta ; \alpha+1 ; x) \\
& \quad=\frac{\alpha+\beta}{\alpha+1} x_{2} F_{1}(\alpha+1,1-\beta ; \alpha+2 ; x)+(1-x)^{\beta} ; \tag{2.24}
\end{align*}
$$

$$
\begin{align*}
& \beta_{2} F_{1}(\alpha, 1-\beta ; \alpha+1: x) \\
& \quad=(\alpha+\beta)_{2} F_{1}(\alpha,-\beta: \alpha+1 ; x)-\alpha(1-x)^{3} \tag{2.25}
\end{align*}
$$

$$
(\alpha+1) \beta(x+\alpha)_{2} F_{1}(\alpha, 1-\beta ; \alpha+1 ; x)
$$

$=\alpha(\alpha+1)_{2} F_{1}(\alpha-1,-\beta ; \alpha, x)$

$$
\begin{equation*}
+\alpha \beta(\alpha+\beta) x_{2} F_{1}(\alpha+1,1-\beta, \alpha+2, x) \tag{2.26}
\end{equation*}
$$

ACKNOWLEDGMENTS

The second and third-named authors wish to acknowledge the financial support of the Korea Research Foundation made in the program year of 1998, Project No. 1998-015-D00022

References

1 J Chot and Y. M Nam, The first Eulerian entegral, Kyushu Math .I 49 (1995) 421-427
2 E D Rainville, Speczal Functzons, The Macmullan Company, New York, 1960
3 H M. Srivastava and H. L Manocha, A Treatase on Generating Function.s Ellis Horwood Limted, John Wiley \& Sons, Inc., New York, 1984.
4 N. M. Temme, Specral Functzons- An Introduction to the Classucal Funartious of Mathematical Physecs, John Wiley \& Sons, Inc., 1996

Inhyok Park, Young Joon Cho
and Tae Young Seo
Department of Mathematics
Pusan National University
Pusan 609-735, Korea
E-maul: Tyseo@hyowon.pusan.ac.kr
Junesang Choi
Department of Mathematics
Dongguk University
Kyongju 780-714, Korea
E-maul: junesang@email.dongguk.ac.kr

