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Lemmas and Corpus Size

Dan-Hee Yanga), Pascual Cantos Gomez, and Mansuk Song

Much research on natural language processing (NLP),
computational linguistics and lexicography has relied and
depended on linguistic corpora. In recent years, many or-
ganizations around the world have been constructing their
own large corpora to achieve corpus representativeness
and/or linguistic comprehensiveness. However, there is no
reliable guideline as to how large machine readable corpus
resources should be compiled to develop practical NLP soft-
ware and/or complete dictionaries for humans and compu-
tational use. In order to shed some new light on this issue,
we shall reveal the flaws of several previous researches
aiming to predict corpus size, especially those using pure
regression or curve-fitting methods. To overcome these
flaws, we shall contrive a new mathematical tool: a piece-
wise curve-fitting algorithm, and next, suggest how to
determine the tolerance error of the algorithm for good
prediction, using a specific corpus. Finally, we shall illus-
trate experimentally that the algorithm presented is valid,
accurate and very reliable. We are confident that this study
can contribute to solving some inherent problems of corpus
linguistics, such as corpus predictability, compiling meth-
odology, corpus representativeness and linguistic comprehen-
siveness.
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[. INTRODUCTION

Commercially available corpora run from one million tokens,
e.g., the Brown Corpus to hundreds of millions or even billions
of tokens, e.g., the Association for Computational Linguistics
(ACL), Data Collection Initiative (DCI), the British National
Corpus (BNC), etc. It is somehow assumed that 10 million
words substantially enable us to describe the information on
vocabulary and syntax synthetically and that the size of a corpus
is not very important once it has reached a certain number of
tokens [1]. We think that this is basically true whenever we in-
tend to compile a concise medium-size paper/compact disk
(CD) dictionary or build a probabilistic tagger.

However, this does not hold if we aim to build a good elec-
tronic dictionary/lexicon for national language processing (NLP)
or an automatic semantic analyzer for machine learning [2], [3].
A practical semantic analyzer should be able to process virtually
any sentence, containing, even, words not included in a concise
medium-size paper/CD dictionary. Complete electronic diction-
aries/lexicons are essential to practical NLP. The problem is
compiling such a complete electronic dictionary/lexicon for an
automatic semantic analyzer. Some possible approaches are the
CYC Project or Dan-Hee Yang’s corpus-based approach [3],
which, in principle, seems to be more practical, efficient, and
flexible.

There is a great deal of interesting research on automated ac-
quisition of linguistic information from corpora by means of
statistical or machine learning mechanisms [4]-{7]. However,
all these works critically suffer from data sparseness, which is a
phenomenon that a given corpus fails to provide sufficient
information or data on relevant word-to-word relationships.
This is an intrinsic problem and a serious drawback for most
corpus-based NLP work. This phenomenon is closely related
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to corpus size and there is a need to consider how large corpora
should be compiled for machine learning and sampling re-
sources in order to develop practical NLP software and/or
complete dictionaries for humans and computers.

In order to answer this question, we shall discuss the flaws of
previous several researches for predicting corpus size, especially
using the pure regression or curve-fitting, which appears to be
the best method to capture the lemma-growth pattem of a corpus.
To overcome these flaws, we shall contrive a new mathematical
tool (a piecewise curve-fitting algorithm) by means of statisti-
cally investigating the relations between the number of different
base forms (lemmas) and the size of a corpus (tokens). Next,
we suggest how to determine the tolerance error of the algo-
rithm for positive predictions with specific corpora. And finally,
we shall experimentally illustrate the validity and reliability of
the algorithm.

II. RELATED WORK

Lauer outlined the basic requirements regarding the necessary
size of linguistic corpora for general statistical NLP [8], [9]. He
suggested a virtual statistical language learning system by means
of establishing an upper boundary on the expected error rate of
a group of language learners as a function of the size of training
data. However, his approach partially lacks validity as the size
of training data that can be extracted from a corpus differs
significantly, depending on the type of linguistic knowledge to
be learned and/or on the procedure and technique used to extract
data from the corpus. De Haan agreed with this issue insisting
that the suitability of data seems to depend on the specific study
to be undertaken and added that there is no such thing as the
best or optimal size [10].

Weischedel demonstrated that a tri-tag model using 47 possi-
ble parts-of-speech (POS) would need little more than one mil-
lion words of training data [7]. However, most researchers
might agree that this size seems neither suitable nor sufficient
for semantic acquisition, among others. This implies that corpus
size is heavily dependent on the linguistic research we want to
carry out. Consequently, there is no use trying to predict the
size of a corpus that can satisfy all linguistic requirements and
expectations.

A more realistic and plausible research line may be found in
the field of information retrieval. With reference to the increase
rate of different forms, Heaps reported that the following expres-
sion is true for general English text of up to at least 20,000
words [11]: The number of different words D is related to the
total number of words N by an equation relative to the way the
text length increases:

D =kN*

hence, logD = BlogN +logk, 0))
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where k and [3 are constants that depend on the particular text.
He pointed out the linear relation between log D and log N by
taking common logarithms of both sides of D = fN#, respec-
tively. The purpose of his research was to create and manage
index files efficiently for document retrieval. This explains why
he experimented on a collection of title words of documents
rather than on general English text. However, he did not give
any explicit explanation on how the equation was actually derived.
Note that Heaps just insisted on the fact that (1) is true for
general English text of “up to at least 20,000 words” rather than
any size. This might imply that the dependent constants or,
what might seem worse, the expression itself is likely to change
as the corpus size grows dramatically. This suggests that even
if we were to find a function that could fit some given data
(corpus), there would still be no guarantee that the function
would always hold. This is precisely the common major flaw
of Young-Mi Jeong’s and Sanchez and Cantos’ researches within
the field of computational linguistics [12], [13]. In Section III-3,
we shall delineate experimentally this problem in more detail.

[II. INDUCTION OF A PIECEWISE
CURVE-FITTING ALGORITHM

We are confident that Heaps, Young-Mi Jeong and Sanchez
and Cantos failed by using regression techniques [11]-{13].
This might be attributed to their preference for Zipf’s laws and
on their belief that these statistical models would not just hold
for their moderately large experimental data but also for any
data (corpus size). However, recall that most regression models
developed in statistics and applied to many engineering and
scientific problems in daily life are generally used with small,
finite and normally distributed data sets (such as heights, ages,
temperature, and the like). However, some linguistic items,
such as lemmas, are neither normally distributed, in principle,
nor finite.

‘We propose to clarify the limits of regression or curve-fitting
and to induce a new algorithm that might overcome these con-
straints.

1. Variation among Corpora

Heaps, Young-Mi Jeong, and Sanchez and Cantos experi-
mented with small texts and/or relatively small corpora [11]-
[13]. However, as already discussed, empirical corpus-based data
depend heavily on the corpora from which this information has
been extracted. This means that different linguistic domains
(economy, science, etc.), degrees of formality, and media (radio,
newspaper, etc.) result in different token-lemma relationships.
To illustrate this issue, consider variation among various cor-
pora depicted in Table 1 and Fig. 1.
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Table 1. Corpora used for the experiment.

YSCI YSCII YSC III YSCV  YSCVI
Short Name STANDARD DEWEY 1980s 1970s 1960s
Number of 2,022,291 1,046,833 5,177,744 7,033,594 6,882,884
Tokens
Sampling Reading pattern Dewey  ’80s Texts ’70s Texts ’60s Texts
Criteria decimal
YSC VII YSC VIII  YSCIX NEWS TDMS
Short Name 1990s TEXT  CHILD NEWS  TDMS
Number of 7,171,653 674,521 1,153,783 10,556,514 9,060,973
Tokens
Sampling ’90s Texts  Textbooks Children’s Newspaper Sampling
Criteria books

The Yonsei Corpus (YSC) consists of eight subcorpora (the
YSCI ~ YSC IX) compiled according to different sampling
criteria. The Center for Language and Information Develop-

ment (CLID) paid special attention to the sampling criteria in
order to get the most balanced corpus (see [14]). In Fig. 1, the
x-axes present the corpus size in words (tokens) and the y-axes
the number of different lemmas or lexemes. The TEXT Corpus
consists of Korean textbooks (ranging from elementary school
to high school level) written by native Korean-speaking authors.
The CHILD Corpus was compiled by means of samples taken
from children’s books (fairy tales, children’s fiction, etc.).

The upper graph in Fig. 1 shows how the number of different
lemmas in the TEXT and CHILD Corpora increases at a slow-
er rate than the Dewey and STANDARD Corpora ones. This
seems obvious as both the Dewey and the STANDARD Corpora
contain different linguistic domains and, additionally, the texts
refer to adult language, which, in principle, is more varied and
lexically and semantically more complex.

Note that the 1960s, 1970s, 1980s and 1990s Corpora were
compiled having chronological criteria in mind: the Dewey Corpus
by the Dewey decimal classification criteria and the STANDARD
Corpus by the reading pattern criteria. The 7TDMS (Text and
Dictionary Management System) Corpus was compiled similarly
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Fig. 1. Lemma-growths in various corpora.
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to the STANDARD Corpus by the Korean Advanced Institute of
Science and Technology (KAIST). The NEWS Corpus is a CD-
ROM title, which consists of all the Chosun-ilbo newspapers
from 1993 to 1994.

The lower graph in Fig. 1 shows that the NEWS Corpus has
a lower lemma-growth compared with its counterparts on the
same graph. Interesting is the way that the /960s Corpus behaves
compared with the 71970s, 1980s and 1990s Corpora. Notice
that the difference between the 7960s and the 1990s Corpus is
more marked than the one between the NEWS and the /990s
Corpus though the 1960s and the 1990s Corpus (not the NEWS
Corpus) were compiled following similar sampling criteria.

From these observations, it follows that sampling strategies
affect lemma-token slope to some degree. However, more im-
portant is the fact that all corpora have one common inherent
characteristic: monotone, convex up, and increasing curve.

For our research purpose, we merged all 10 corpora into the
TOTAL Corpus (totaling 50,780,790 tokens).

2. General Function and Good Curve-fitting

In this section, we shall derive an equation able to describe
monotone, convex up and increasing curves that matches the
lemma-token growth curve. It is a well-known fact that regres-
sion is similar to curve-fitting, though curve-fitting offers more
general and sophisticated techniques than regression [15]-[17].
However, regression does not even offer any clue on how to find
a general form of a desired function. Consequently, we shall
proceed with curve-fitting rather than regression.

Given the data points p(x;, ¥,), p(X5,¥5), -, p(X,,V,),
estimating the corpus size would be to find x, corresponding to
v, O[y,, y,]1(k > n), where X is the corpus size, and » is the
number of different lemmas. In other words, the problem is to
find a function that most closely fits the given data points in order to
estimate how the number of different lemmas y, grows or
evolves regarding changes given in a corpus of size x;. Curve-
fitting is to find a function y = g(x) that fits a given set of

data.

gi(x)=ae™, g,(x) =ax’, gy(x) =a + Blnx,
g.(x)=a+P/x=g,(x)=a/(B+x),g(x) =ax/(B+x).2)

In curve-fitting, it is vital to define correctly or as accurately
as possible a general form of g(x) in order to achieve the
“best fitting” of the given experimental data. The functions in
(2) above are six commonly used two-parameter general func-

tions whose graph is monotone and convex. Any graph of a
g(x) function suitable for fitting monotone and convex data

has no turning points and no inflection points for the given in-
terval. Note that two parameters, say & and [3, are generally
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Table 2. Linearizing the curve.

Origi I.lal Linearized Form Transformation Relations
Function
y=gx) Y=LX)=a+bX X=Y=a= b= a= f=

a

Inx Iny lna B e b

y=ax? Iny=Ihha+Blnx

sufficient to achieve good fitting in this case.

One is likely to think that the more parameters we have in
various general functions, the more the curve fitting improves,
e.g., whenever we use any plausible linear combination of the
functions in (2). Such a general function is called an n-
parameter linear model. However, it is also well known that
the model is suitable for data having either turning points or
inflection points on the fitting interval. In addition, we might al-
so consider polynomial functions. The polynomial wiggle
problem states that it is impossible to find a correct solution to
such monotone and convex data [17].

To evaluate the exactness of how a given guess function g(x)
fits given points p,,---, p,, we will use the least square error
criterion, which is to find g(x) minimizing the sum of square
errors E(g) = [g(x;) -y, ]*. If the error for each y, is
normally distributed and g(x) has the correct functional form,
then the g(x)obtained by minimizing E(g) will approach
actual functional dependence as the number of data points
increases. Note that in what follows we shall refer to functions
as general functions if the values of their parameters are not yet
set, or else as guess functions. Those functions used for pre-
dicting outside the fitting interval will be named predicting
functions.

In order to fit a two-parameter g(x) to monotone and convex
data like the corpus slope (see Fig. 1), the linearizing formula of
Table 2 can be used [15], [17]. We must now choose the func-
tion, among the general functions in (2), that best fits the differ-
ent lemma-growth slope of a corpus. If we plot the given data
points, as in Fig. 1, the lemma-growth gets monotone, convex
up and increasing. Therefore, if the two new conditions (a)
convex “up” and (b) “increasing” are added to the conditions
“monotone and convex”, the considered scope is restricted to
the four functions given in Table 3.

We evaluated each of the functions according to the following
three factors: (a) comparison of the square errors (the second
column of Table 3; whenever the entire interval of the TOTAL
Corpus is fitted only by means of a single function); (b) consid-
eration of the number of subdivisions-I (whenever the piecewise
curve-fitting method described in Section I1I-3 is used); and (c)
consideration of the number of subdivisions-II (whenever the same
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Table 3. Comparison of the degree of fitting the TOTAL Corpus with
the monotone, convex and increasing general functions.

S Number of Number of
quare error subdivisions-I subdivisions-IT

g,(x) = a” 0.631819 2 1
(B>0)

g,(x) =a+Blnx 73,375,272.724506 196 42
(B>0)

g=a+B/x  15972,823,083.486553 199 44
(B<0)

g(X)=ax/(B+x)  5,043,779,002.584718 196 49
(B>0)

method is used for the interval over 40 million tokens). The con-
sideration of these three factors certainly shows that the general
function g, (x) is superior to all the others.

Therefore, we decided to take the following equation as a
general function for this study.

g(x)=y=ax’, 3)

where y is the number of different lemmas, x is the corpus size
in this study. As already advanced in Section II, Heaps found
this general function [11], even though he presented neither any
convincing mathematical method to reach it nor any mathe-
matical explanation regarding its adequacy. By the use of a
common logarithm instead of a natural one in (1) in Section II,
we just infer that he might be using a linear regression method.
Notice the mathematical plausibility in modeling the relationship
between the different items (lemmas) and the total number of
words (tokens) by g,(x), even ifit seems to be the worst function.

We can now draw two new conclusions. First, the lemma-
growth slope of a corpus, irrespective of its size, is always
monotone, convex up and increasing. This means that y = ax?

can, irrespective of its size, give a good fit for the corpus growth
slope (lemmas) within a reasonable rate of error. Second, for
both the entire and partial interval of the slope, the general
function y =ax? is the best among those presented in Table 3.

3. Limitations of a Guess Function

As already mentioned, even if we were to find a function for
any given data, using it for prediction as such cannot always be
justified because the dependent constants, or what is worse, the
equation itself might change whenever the corpus size grows.
To test this, we fitted the entire interval of the STANDARD and
1980s Corpus (Fig. 2 (a)) and the TOTAL Corpus (Fig. 2 (b))
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by means of a single function. At first sight, the entire interval
of the STANDARD Corpus appears to fit satisfactorily given
that the graphs are drawn on a highly reduced scale and the
data is relatively small. However, accuracy of approximation
towards the last interval (or tail of the slope) is of prime impor-
tance in order to predict the size of a linguistic corpus accurately.

Observing both graphs, it becomes obvious that, though the
fitting slope and the actual one flow similarly, the closer we get
to the last interval, the more evident the differences become.
Thus, the larger a corpus gets, the more the number of different
lemmas that we can find is prone to be overestimated. The
graph of the TOTAL Corpus Fig. 2 (b) reinforces this evidence.

Table 4 interprets the graphs of Fig. 2 numerically. Note that
the square errors were calculated by taking logarithms of both x
and y according to the linearizing formula of Table 2. The actual
number of different lemmas in the TOTAL Corpus is 83,498.
The question now is how large a corpus would need to be in
order to get 83,498 different lemmas. We experimented with
the STANDARD Corpus and the corresponding guess function
revealed that a hypothetical 7,240,000 token corpus would be
enough. Further research revealed that the 7,240,000 token
corpus actually contains just 54,736 different lemmas. Experi-
menting on the /980s Corpus, we found that a 15,540,000 token
corpus would be needed. Notice that even though the size of
the 1980s Corpus is 1.5 times bigger than the STANDARD one,
the actual increase in lemmas is just 8,108. However, the predicted
corpus size for the /980s Corpus is twice the one predicted for
the STANDARD corpus.

Regarding the TOTAL Corpus, which is almost ten times
larger than the /980s Corpus, the guess function predicted a
41,360,000 token corpus, which is 2.7 times more than the pre-
dicted size for the 7980s Corpus. In addition, we found here a
17,428 different lemma increase. The experimental finding

from the TOTAL Corpus is relatively accurate due to its small
error rate: (83,498 —80,272)/83,498 x100 =3.86 % . Notice,

however, that the fitting curve near the last interval in Fig. 2 (b)
flows linearly and much higher compared to the actual data.
From this experimental data, we can conclude that such a guess
function is fairly reliable within the given interval [x,, x,] of

experimental data, but, as already discussed, we feel strongly
confident that predicting x outside the given interval should be
avoided.

Up to this point, we are now able to advance a number of pre-
liminary conclusions: (a) the guess function determined by either
curve-fitting or regression warrants satisfactory accuracy in esti-
mating a value within the fitting interval. This implies that it
seems reasonable to use a guess function as a predicting function
in these cases; (b) these guess functions are not very reliable if we
want to predict a value outside the fitting interval. Consequently,
there are only two cases where we can use such guess functions
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Fig. 2. Actual and Fitting curves: (a) the STANDARD and 1980s Corpus (b) the TOTAL Corpus.

Table 4. Fitting curves and their degree of error.

STANDARD

1980s TOTAL

Corpus size in tokens

Guess Function

Square Error

Predicted corpus size to get 83,498 different lemmas

Actual number of different lemmas in the predicted corpus size

2,022,291

y= 17.263 80xX0.537082

0.0196810 0.0826790 0.6275763
7,240,000 15,540,000 41,360,000
54,736 62,844 80,272

5,177,744 50,780,790

»=108.20768xx"401304 =701.4428  x0272521

as predicting functions: (a) in ideal cases, whenever the experi-
mental data converges to infinity (o0) or contains almost all
possible instances; and (b) in practical cases, whenever the
experimental data is sufficient, that is, whenever we are confident
that there will be no sudden change in the slope even if size
increases dramatically.

In what follows, we shall use the term “estimate™ strictly
whenever we are dealing with the problem found within the
given experimental interval, and “predict” whenever the problem
lies outside it.

4. Piecewise Curve-fitting Algorithm

As already discussed, to predict the size of a corpus reliably
and accurately for any NLP research, we cannot fit the entire
interval by means of just a single function given in (2) in Section
II-2. Instead, we have developed the piecewise curve-fitting
algorithm (see Fig. 3) that overcomes the limitations and draw-
backs of the pure curve-fitting method for a given interval
[x,, x,]. The algorithm subdivides the entire interval into several
pieces to satisfy certain constraints (this will be described later)
and to enhance the accuracy in the curve-fitting.
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To get a full understanding of this algorithm, refer to Fig. 4.
The thick curve in Fig. 4 (a) shows the actual lemma-growth
slope of the TOTAL Corpus. If we predict or project the corpus
to 3.3 million words or tokens, the guess function becomes
Vo =21.963142 % x*3'%8! (square error: 0.008240). According

to the guess function, we might expect to find roughly 190,000
different lemmas in a 50 million token corpus. However, we
actually just found roughly 70,000 ones. Notice that Fig. 4 (a)
visually represents the limitations and problems of the predict-
ing approaches used by Heaps, Young-Mi Jeong and Sanchez
and Cantos [11]-[13].

A solution to this problem is to predict only for the interval
[3300000, 50000000], leaving aside the interval [1, 3300000].
The new guess function gives y, =1770.104205 x x"2'%!

(square error: 0.025799). As Fig. 4 (a) reveals, the new fitting
curve seems to be precise within the new given interval, even
though it does not fit accurately for the first interval [1, 3300000].
Thus, the algorithm fits the actual curve very closely even
though size increases. As already mentioned (see Fig. 2 in
Section III-3), the accuracy of approximation towards the last
interval is of prime importance in predicting the size (or growth
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Initialization Step
Seti=1,j=n.

lteration Step
Do until the square error on the given interval [, j] is less than the
given tolerance error:
(a) Find the best position t where the sum of tolerance errors on
[i, f and [t, j] is minimal.
(b) Subdivide the interval [i, ] into [i, f] and [t, j] by t.
(c) Perform the iteration step for each of the new given intervals
[i,  and [t, j].

Final Step
Return the fitting function for the last right subinterval as a predicting
function.

Fig. 3. A piecewise curve-fitting algorithm.

pattern) of a corpus. Hence, the procedure in Fig. 4 (b) is worth
considering. Notice that the position for subdivision, x, =3.3
million, is calculated in the iteration step (a) of piecewise curve
fitting algorithm in Fig. 3.

The square error, 0.025799, of y, in Fig4 (a) is still greater than
the given tolerance error 0.01 (see next section for this value).
Therefore, it seems wise to subdivide the interval again. The
right position for subdivision is at x, =33 million tokens by
the iteration step (a) as seen in Fig. 4 (b). Here, the front interval
[3300000, 33000000] fits with y, =1357.905526 x x>

(square error: 0.003520), and the rear interval [33000000,
50000000] with y, =6251.224965% x*'*¥1%  (square error:

0.000738). At this point, notice that the square error on each
subinterval is less than the given tolerance error.
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Fig. 4. Piecewise curve-fitting of the TOTAL Corpus.
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Table 5. Corpus size by tolerance errors.

Tolerance error 0.1 0.01 0.001
Predicting function ¥ =906.14798 x x023912 ¥ =2141.05529 x x01900¢ ¥ =3126.23437 x x168510
Number of subdivisions 2 3 7
Error of the predicting function 0.024365 0.002643 0.000834
| Predicted — Actual | 983 124 353

We shall use guess functions like y; in Fig. 4 (b) to predict

corpus sizes. The reason for this decision is based, as previously
mentioned, on the assumption that there are only two cases that
justify the use of an original guess function, e.g., those of Fig. 2,
as a predicting function. The first one is rarely expected to be
accomplished in reality, particularly with linguistic corpora. If
this is so, we have no choice but to satisfy the second constraint.

In Fig. 4 (a), the TOTAL Corpus seems to satisfy the second
constraint due to the sudden change at x, = 3.3 million tokens
and some change at x, =33 million tokens. At least, the

quantity of the next sudden change will be less than
|y0(x,) =y (x,)|, where x, is a dividing point (see Fig. 4 (b)).

Consequently, we shall set up a new practical constraint: the
square error on each subinterval should be less than the reason-
able tolerance error. In particular, the last interval should fit
closely without falling into a local solution. What we under-
stand by a local solution is that each fitting curve fits its corre-
sponding subinterval well, including the last interval. However,
the accuracy of estimation is low (the extreme subinterval would
be just 1). According to these new constraints, the last y, deserves

to be the predicting function for the purpose of our research.

5. How to Determine the Tolerance Error

In what way can we determine the value of tolerance error
for good prediction? Recall that the tolerance error aims to be
smaller, the more the entire interval is subdivided into. Thus,
the more we subdivide the entire interval into smaller subintervals,
the better we can fit the subinterval. However, the more subin-
tervals, the more possibilities there are of falling into a local
solution. There is no mathematical algorithm to overcome such
phenomena. We suggest a reasonable value derived from our
experimental data.

We shall be reducing the tolerance error by 1/10 in order to
find the proper number of subdivisions , i.e., acts of dividing
and shall then evaluate each predicting function by means of
the following factors: (a) the number of subdivisions; (b) the
least square errors of the predicting functions; (c) the absolute
difference between the predicted corpus size and the actual one.
The most desirable predicting function will be the one where
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both the absolute difference and the number of subdivisions are
kept small.

The procedure to find a reasonable tolerance error rate con-
sists in finding predicting functions for the 45 million token
curve for nouns (see Fig. 5 (a)) by means of our piecewise
curve-fitting algorithm (see Fig. 3). Next, we predict the number of
different nouns by means of the resulting predicting function.
Finally, we compare the predicted number with the actual
number of different nouns occurring in the TOTAL Corpus.
(Note that the TOTAL Corpus contains actually 50.7 million
tokens and 62,497 different nouns). Table 5 shows that the
difference is minimal at a tolerance error of 0.01. Furthermore,
since the entire interval is subdivided into just four parts, the
possibility that it falls into a local solution is much lower compared
to the tolerance error of 0.001, which has been divided into
eight parts. Therefore, we can conclude that a tolerance error of
0.01 is reasonable for the TOTAL Corpus.

6. Experimental Result

We are now in the position to predict the size of linguistic
corpora by our piecewise curve-fitting algorithm (see Fig. 3)
with a tolerance error of 0.01. This prediction is performed on
lemmas of the four major POS: nouns, verbs, adjectives and
adverbs. The reason for this restriction is justified on the evi-
dence that these four POS are lexical items, in contrast to func-
tional or grammatical items (e.g. prepositions, conjunctions,
etc.) and because they account for around 98 % of all lemmas
found in standard Korean dictionaries. Clearly, lexical items are
the main goal for automatic lexical acquisition in NLP and
lexicography, in general.

In addition, there are also other motivations why finding pre-
dicting functions by POS is important and necessary. These have
something to do with (a) automatic lexical acquisition—trying to
acquire a certain number of items (say, 20,000) regardless of its
POS might be misleading as most or many items might belong to
a particular POS (i.e., nouns)—and (b) specific research inter-
ests—we might be just interested in specific POS only, e.g. ac-
quiring just 20,000 nouns, 3,000 verbs, 1,000 adjectives, 500 ad-
verbs, etc..
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Table 6. Guess functions of POS by subintervals (where [ is a subinterval (unit: 100,000 tokens), G is the guess function,

and shaded fields refer to the predicting functions).

I [0,36] [36,216] [216,510]
NG y=14.31002 x X547y = 69138416 x X"y = 2]14],0553 x x019054
I [0,15] [15,30] [30,282] [282,510]
Vo y=2.39063 x x"0H6 y = 4426743 x X0y = 3741718 xxO002  y = 32(6.4913 x X005
. I [0,9] [9,12] [12,32] [32,93] [93,318] [318,510]
G y=1.12434x x589 y=0.000297 x X200  y=7.5463 x X192y =167.90725 x X016y =266.29583 x x>16006 = 12321248 x x0075192
. [0,6] [6,15] [15,21] [21,87] [87,288] [288,510]
G y=5.55857 xx0327 Y =0,00125 x x"3¥16  y= 1044507 x xOBF1 y=127.85208 x X052y =238 40436 x x0Ty = 1554.3040 x x00%315

Table 6 gives the guess functions for the lemmas by POS
according to the TOTAL Corpus. So, for example, if we want to
guess the number of different noun lemmas for a corpus ranging
from 0 to 3.6 million in size, we can calculate it using guess
function y =14.31002x x> where y results into the
number of different nouns and x stands for the corpus tokens.
Similarly, guess function y =44.26743 % x****™ ig effective
to guess the number of different verbs for a corpus ranging
from 1.5 million to 3.0 million in size. Reversely, it follows that
we can guess the required corpus size to get a specific number
of different lemmas from the guess functions.

Young-Chae Kim manually counted a corpus consisting of 69
elementary textbooks (totaling 385,291 tokens) [18]. The number
of different noun lemmas in his corpus is 12,029. If we apply
the corresponding guess function y =14.31002x x**7* for
the subinterval [0, 3600000] (since the total size of the elemen-
tary textbooks is within the subinterval [0, 3600000]), we get
just 10,736 different nouns. This might be misleading for the
reader. However, we need to consider that the guess function
used has been derived from the TOTAL Corpus and applied to
a different corpus [18].

However, we can try to adjust the calculations by considering
homographs. Dan-Hee Yang proposed a formula to calculate
the maximum number of different nouns by

M =N x(HD/HI) 4
where M is the maximum number of different lemmas (nouns),
N the observed number of different lemmas (nouns), HD the
number of lemmas (nouns) in a dictionary, and HI the total
number of homograph-independent lemmas (nouns) in the
same dictionary [19]. The maximum number of different nouns
is 10,736%(305,030/249,748) =13,113. Note that the dis-
tributions HD =305,030 and HI =249,748 are obtained
from Ulimal Keun Dictionary ‘Korean Grand Dictionary’. This
reveals that the real amount of different nouns 12,029 is be-
tween the guessed value 10,736 and the maximum one 13,113.
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Figure 5 compares the actual curves of the different occur-
ring lemmas and their corresponding predicted ones regarding
the four major POS relative to the TOTAL Corpus. A closer
look at Fig. 5 reveals that our predicting functions fit reasona-
bly well, particularly the right half of the total interval, which is
long enough to demonstrate the accuracy of our predicting
functions.

In order to calculate the required corpus size containing a
specific number of different lemmas, we need to transform the
predicting functions given in Table 7, taking logarithms of both
sides of each predicting function. For example, for nouns we
have

¥y =2141.05529% x* 190
= logy =10g2141.05529 +0.190054 log x

where the predicted corpus size x results from

0.190054 logx = (log y — log 2141.05529)
= logx = (log y - log2141.05529)/0.190054,

giving the following transformed function

— 1 (\(log y—log 2141.05529)/0.190054
x = 1 Qlogy-log ) .

Other transformed functions of Table 7 are induced in the same
way. We can use these transformed functions to get the corre-
sponding corpus size x regarding a required number of lemmas
. From Table 7, for example, to obtain 100,000 different nouns,
its transformed function x =]1(Qoerloe2141.05329)/0.19004  peyeq]g
that a corpus of 608 million tokens would be required (by
SOlVing x = 10(log100,000—10g214l.05529)/0.190054 )’ and a 23 bllhon one
to get 200,000 different nouns. To get 15,000 different verbs,
X = 1QUoerToe32069129)/00M4925 - peyeals that roughly 877 million
tokens would be needed, and about 41 billion tokens for 20,000
different verbs.
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Fig. 5. Actual lemma-growth curves and fitting ones for nouns, verbs, adjectives and adverbs.

The accuracy of the predicting functions is very high. In the case  ing functions are valid, accurate and very reliable.
of nouns, for instance, the difference between the actual number of
different lemmas A and the predicted ones P is just 124, thus IV. CONCLUSION
virtually 0; the error rate is 0.002643. Note that the actual number
of different lemmas by POS is 62,497 for nouns, 12,188 for verbs, In this paper, we have contrived a new mathematical tool for
4,720 for adjectives, and 3,138 for adverbs in the TOTAL Corpus.  predicting the relationship between linguistic items (lemmas) and
We infer from these experiments and evaluations that our predict-  corpus size (tokens), overcoming the major flaws of several pre-
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Table 7. Predicting functions and their transformed functions by POS (where 4 is the actual number of different lemmas

and P the predicted number of different lemmas).

Predicting functions Transformed functions Error rate |4—P|
Nouns y=2141.05529 x x190054 x = 1Qllogy ~log2141.05529)/0.190054 0.002643 124
Verbs ¥ =3206.49129 x x007149% x = 1 Qllogy ~log 320649129)0.074925 0.000574 72
Adjectives ¥ =1232.12482 x x00712 x = 1(losy ~log 1232.12482)0.075192 0.001228 42
Adverbs ¥ =1554.30401 x x"03%15 x = 1(loey ~log 1554.30401)/0.039315 0.000431 15

vious researches on this issue.

It seems trivial that the larger the experimental corpus used
for predicting the required size of a corpus, the more accurate
the predicting result. The importance of predicting corpus sizes
becomes particularly relevant whenever we want to know
accurately the required size of a hypothetical corpus needed for
any specific purpose. In addition, this also allows us to estimate
the compilation cost: materials needed, the time required, people
involved, etc..

The piecewise curve-fitting algorithm described here in this
paper has various practical uses: (a) to determine precisely the
size of a corpus needed, depending on the required linguistic
items (lemmas, types, tokens) and the type of research to be
undertaken; (b) to choose the best compiling strategies. For
example, if we find that an impractically large corpus (e.g. trillion
tokens) might be required, we might have to change the current
method of compiling that corpus. On the other hand, if a smaller
corpus (e.g. billion tokens) is needed, we might put more
emphasis on balance and coverage; (c) to induce the relation-
ship between lemmas and tokens, types and tokens, and lemmas
and types. The usefulness of these dependencies becomes
evident in many ways, in particular whenever we want to contrast
regularity patterns regarding specific linguistic areas (e.g.,
written versus spoken, Spanish versus Korean, newspapers
versus fiction, see [13], [20]; and finally (d) to represent any
monotone, convex up, increasing curve that cannot be repre-
sented by single functions. That is, whenever the error term is
too big to be represented by a single function.

One critical problem is, however, how to determine the value
of tolerance error for positive predictions. In this paper, we
have suggested a reasonable method, though it is not necessarily
the best, consisting of reducing the tolerance error to 1/10 in
order to find the proper number of subdivisions and evaluating
each predicting function according to the three factors outlined:
number of subdivisions, least square error and difference
between predicted and actual corpus size. Further research is
required to find a better procedure or formulation, i.c., the rela-
tion between tolerance errors and corpus sizes, in this respect.
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We are confident that our predicting functions are valid,
accurate and very reliable, at least comparatively speaking. In
addition, we do also hope that this study will shed new light on
issues such as corpus predictability, compiling methodology,
corpus representativeness and linguistic comprehensiveness.
Our piecewise curve-fitting algorithm is perfectly applicable
and valid for any other language, though for practical reasons
we have focused and experimented only on Korean.

ACKNOWLEDGMENTS

This research was funded by the Ministry of Information and
Communication of Korea under contract 98-86. The authors
are most grateful to Prof. Sang-Sup Lee, Prof. Aquilino
Sanchez and Dr. Tony Berber-Sardinha for their valuable
comments on the the earlier drafts of this paper.

REFERENCES

[1] Sang-Sup Lee, “Corpus: the Concept and Implementation,” Lexi-
cographic Study, Tap Press, Seoul, Vol. 5, 6, 1995, pp. 7-28.

[2] Dan-Hee Yang, and Mansuk Song, “Machine Learning and Cor-
pus Building of the Korean Language,” In Proceedings of 98
Spring Conference of the Korea Information Science Society
(KISS), Seoul, 1998, pp. 408-410.

[3] Dan-Hee Yang, and Mansuk Song, “Representation and Acquisi-
tion of the Word Meaning for Picking out Thematic Roles,” In
International Journal of Computer Processing of Oriental Lan-
guages (CPOL), the Oriental Languages Computer Society1999a),
Vol. 12, No. 2, 1999, pp. 161-177.

[4] Kenneth W. Church and Robert L. Mercer, “Introduction to the
Special Issue on Computational Linguistics Using Large Corpora,”
Using Large Corpora, edited by Susan Armstrong. The MIT
Press, 1994, pp. 1-24.

[5] Philip Resnik, Selection and Information: A Class-Based Ap-
proach to Lexical Relationships, Ph.D. Dissertation of Department
of Computer and Information Science. Pennsylvania University,
1993, pp. 6-33.

ETRI Journal, Volume 22, Number 2, June 2000



[6] Dan-Hee Yang and Mansuk Song, “‘How Much Training Data Is
Required to Remove Data Sparseness in Statistical language
Learning?,” In Proceedings of the First Workshop on Text, Speech,
Dialogue (TSD’98), Bruno, 1998, pp. 141-146.

[7] Ralph Weischedel ez al. “Coping with Ambiguity and Unknown
Words through Probabilistic Models,” Using Large Corpora, edit-
ed by Susan Armstrong, The MIT Press, 1994, pp. 323-326.

[8] Mark Lauer, “Conserving Fuel in Statistical Language Learning:
Predicting Data Requirements,” the 8" Australian Joint Confer-
ence on Artificial Intelligence, Canberra, 1995.

[9] Mark Lauer, “How much is enough?: Data requirements for statisti-
cal NLP,” cmp-1g/9509001. In 2" Conference of the Pacific Asso-
ciation for Computational Linguistics. Brisbane, Australia, 1995.

[10] Pieter De Haan, “The Optimum Corpus Sample Size?,” In Leitner,
Gerhard (eds.): New Directions in English Language Corpora,
Methodology Results, Softiware Development, Mouton de Gruyte,
New York, 1992, pp. 3—19.

[11] H. S. Heaps, Information Retrieval: Computational and Theoreti-
cal Aspects, Academic Press, New York, 1978, pp. 206-208.

[12] Young-Mi Jeong “Statistical Characteristics of Korean Vocabulary
and Its Application,” Lexicographic Study, Tap Press, Seoul, Vol.
5,6, 1995, pp. 134-163.

[13] Aquilino Sanchez and Pascual Cantos, “Predictability of Word Forms
(Types) and Lemmas in Linguistic Corpora, A Case Study Based on
the Analysis of the CUMBRE Corpus: An 8-Million-Word Corpus
of Contemporary Spanish,” In International Journal of Corpus
Linguistics Vol. 2, No. 2, 1997, pp. 259-280.

[14] Chan-Sup Jeong, Sang-Sup Lee and Ki-Sim Nam, et al. “Selecti-
on Criteria of Sampling for Frequency Survey in Korean Words.”
Lexicographic Study, Tap Press, Seoul, Vol. 3, 1990, pp. 7-69.

[15] Richard L. Burden and J. Douglas Faires, Numerical Analysis,
Brooks/Cole Publishing, California, 1997, pp. 473—483.

[16] William Hays, Statistics, Harcourt Brace College Publishers, Florida,
1994, pp. 28-30.

[17] M. J. Maron, Numerical Analysis: A Practical Approach, Mac-
millan Publishing, New York, 1987, pp. 201-248.

[18] Young-Chae Kim, “Frequency Survey of Korean Vocabulary,” In
Journal of Korean Psychological Association, Vol. 5, No. 3, 1986,
pp. 217-285.

[19] Dan-Hee Yang, Su-Jong Lim and Mansuk Song, “The Estimate of
the Corpus Size for Solving Data Sparseness,” In Journal of KISS,
Vol. 26, No. 4, 1999, pp. 568-583.

[20] Aquilino Sanchez and Pascual Cantos, “El ritmo incremental de
palabras nuevas en los repertorios de textos. Estudio experimental
y comparativo basado en dos corpus lingiiisticos equivalentes de
cuatro millones de palabras, de las lenguas inglesa y espafiola y en
cinco autores de ambas lenguas,” Atlantis (Revista de la Aso-
ciacion Espariola de Estudios Anglo-Norteamericanos), Vol. 19,
No. 1, 1998, pp. 205-223.

ETRI Journal, Volume 22, Number 2, June 2000

Dan-Hee Yang received his B.S. and M.S. degrees
in computer science from Yonsei University,
Seoul, Korea, in 1989 and 1991, respectively.
From 1991 to 1996, he worked as a chief re-
searcher at the Center of Software R&D in
Hyundai Electronics Inc. He received his Ph.D.
degree in computer science from Yonsei Uni-
versity in 1999. During 1994 to 1999, he was a
part-time lecturer and/or researcher at Yonsei University and/or Asia
United Theological University. Since 1999, he has been a professor of
the Department of Computer Engineering at Samchok National Uni-
versity. Since 2000, he has been an editor of the Editorial Committee of
the Korean Society for Internet Information and an honorary researcher
of the Center for Language and Information Development at Yonsei
University. His research interests include natural language processing,
computational linguistics, information processing on internet, artificial
intelligence, computer assisted language learning, multimedia.

Pascual Cantos Gémez is a Senior Lecturer at
the University of Murcia, Spain. He studied
English Language and Literature at the Univer-
sity of Murcia as an undergraduate, where he
obtained his B.A. and Ph.D. on CALL (Com-
puter Assisted Language Learning). He spent
four years lecturing and doing research at the
University of Murcia before taking an MA in
Computational Linguistics at Essex University, UK. His main research
interests are in corpus linguistics, lexical computation and CALL. He
has been involved in a number of corpus linguistics and CALL re-
search projects, and is a member of the LACELL (Lingiiistica Apli-
cada Computacional, Ensefianza de Lenguas y Lexicografia) Research
Group at the University of Murcia. He has published various articles
and books on corpus linguistics, lexical computation and CALL.

Mansuk Song received his B.S. degree in
Mathematics from Hannam University, Korea,
in 1963, ML.S. degree in Mathematics from Yonsei
University, Korea, in 1968, M.S. degree in
Mathematics from the University of Wisconsin,
US, in 1972, and Ph.D. degree in Numerical
Analysis from the University of Michigan, US,
in 1978. From 1978 to 1981, he was a senior re-
searcher in the Agency for Defense Development. Since 1981, he has
been a professor in the Department of Computer Science at Yonsei
University. During 1988 to 1989, he was a visiting scholar at the Uni-
versity of Wisconsin. His research interests include natural language
processing and numerical analysis.

Dan-Hee Yangetal. 31


http://december.yonsei.ac.kr/~dhyang/��������ȸ����-99.doc
http://december.yonsei.ac.kr/~dhyang/��������ȸ����-99.doc

