6(4): 189~192 (2000)

Isoflavonoids and Alkaloids from Spartidium saharae

Osama B. Abdel-Halim[†], Hosny A. Abdel-Fattah, Fathi T. Halaweish* and Ahmed F. Halim

Dept. of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35511, Egypt, †Dept. of Chemistry, South Dakota State Univ., SD, USA

Abstract – A new isoflavone, (+)-4'-O-methyl-8-C- β -D-glucopyranosylgenistein, was isolated from the aerial parts of *Spartidium saharae* together with the known isoflavone, (+)-8-C- β -D-glucopyranosylgenistein as well as dipiperidine alkaloids, (+)-ammodendrine and (+)-N-acetyl hystrine. Details of their structure elucidation are based on chemical and spectroscopic methods. N-formyl ammodendrine was detected by GC-MS. The potential chemotaxonomic value of the alkaloid content is explored. Cytotoxic activity has been determined for both alcoholic extract and isolated compounds. **Key words** – Fabaceae, aerial parts, isoflavone-C-glycosides, (+)-4'-O-methyl-8-C- β -D-glucopyranosylgenistein, dipiperidine alkaloids, chemotaxonomy, cytotoxic activity

Introduction

Spartidium saharae Coss. et Dur. Pomel (=Genista saharae Coss. et Dur.) belonging to Fabaceae is a small leafless wild desert shrub growing in Libya (Jafri and El-Gaadi, 1980). It is a monotypic genus, confined to the saharan desert areas, especially Libya and Algeria. The status of Spartidium as a distinct genus was based on morphological difference from Genista, since the calyx of Spartidium is campanulate, 5-dentate, with short triangular teeth, while Genista has two-lobed calyx (Jafri and El-Gaadi, 1980; Bourquin et al., 1987). However, Bourquin et al. (Bourquin et al., 1987) stated that, no chemotaxonomic differences between Genista and Spartidium based on their chemical study on Spartidium saharae grown in Algeria where they reported the isolation and identification of (+)-ammodendrine, while N-methyl ammodendrine, N-acetyl hystrine, anabasine, sparteine, lupanine and cytisine were tentatively chracterized by GC-MS. In the course of our studies on leguminous plants (Abdel-Halim et al., 1992_{ab}, 1995, 1997; Abdel-Halim, 1995), we have investigated the constituents of the aerial parts of Spartidium saharae growing in Libya. In the present study, the isolation and structural elucidation of isoflavone glycosides as well as some dipiperidine alkaloids was reported. Identification of isolated compounds was established through chemical and spectroscopic methods. The chemotaxonomic value of the alkaloid content is discussed. Cytotoxic activity has been assessed for both alcoholic extract and isolated compounds.

Experimental

Plant material – The aerial parts of *Spartidium saharae* were collected from Tripoli (Libya) during flowering season. A voucher specimen was identified by Professor Dr. A. El-Gady, Faculty of Science, El-Faateh University, Tripoli and deposited in Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.

Extraction – The air dried powdered aerial parts of Spartidium saharae (1 kg) were extracted by percolation with 75% EtOH until the last fraction gave a negative response to Dragendorff's reagent. The extract was concentrated under reduced pressure, diluted with equal volume of water and divided into two equal portions. The first portion was defatted with pet. ether then extracted with EtOAc (4×400 ml). The EtOAc extract was concentrated to afford 11.0 gm extract (flavonoid fraction). The second portion was acidified with 0.5 N HCl and left standing at room temperature for 30 minutes. After centrifugation, the supernatant was alkalinized with NH₄OH to pH 9, extracted with CH₂Cl₂ (4×300 ml). The CH₂Cl₂ extract was dried over anhydrous Na₂SO₄ and the solvent was evaporated in vacuum. The alkaloid mixture was obtained as pale yellow oil in yields of 1.5% of the dry weight.

Isolation of flavonoids – 7 gm of EtOAc extract was chromatographed on Diaion HP-20 (Mitsubishi

^{*}Author for correspondence.

Chemicals San., Tokyo, Japan), eluted with water with increasing proportions of MeOH to give 6 main fractions. Fraction 4 (50% MeOH) afforded compound \mathbf{F}_1 (300 mg), while fraction 5 (55% MeOH) afforded fraction enriched in \mathbf{F}_1 together with \mathbf{F}_2 . Pure \mathbf{F}_2 (200 mg) was obtained from these fractions by further purification on silica gel C.C. using solvent system c.

(+)-4'-*O*-methyl-8-*C*-β-D-glucopyranosylgenistein (F₁); white amorphous solid, mp. 214-220°, $[\alpha]_0^{26}$ +12°(MeOH, c. 0.15); UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 258, 320_{sh}; IRV $_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400 (OH), 1640 (C=O), 1615, 1580 (C=C); HR-FABMS, *m/z*: (447.1290[M+H]⁺, C₂₂H₂₃O₁₀ calcd. 447.1291); EIMS *m/z* (rel. int.): 429 ([M-OH]⁺ 22), 415(100), 397 (62), 314(13), 297 (32), 283 (40), 281(17), 254 (16), 165 (18), 153(16), 132(18); ¹H-NMR (CD₃OD, 400 MHz) and ¹³C-NMR (CD₃OD, 100 MHz): Table 1.

(+)-8-*C*-β-D-glucopyranosyl genistein (F₂); yellow crystals, mp. 215-217° (EtOAc), $[\alpha]_D^{26}$ +16.6° (MeOH, c. 0.12); UV λ_{max}^{MeOH} nm: 255, 326_{sh}; IRv_{max}^{KBr} cm⁻¹: 3420 (OH), 1638 (C=O), 1620, 1585 (C=C); EIMS *m/z* (rel. int.): 414 ([M-H₂O]⁺, 82), 310(86), 284 (30), 283 (100), 270(72), 165(15), 153(16), 148(16), 118 (24); ¹H-NMR (CD₃OD, 400 MHz) and ¹³C-NMR (CD₃OD, 100 MHz): Table 1.

FeCl₃ oxidation of compounds F_1 and F_2 – as previously reported (Markham, 1982).

Bioassay of cytotoxic activity against mouse P388 – as previously reported (Twentyman and Luscombe, 1987).

Analysis of alkaloids by GC/MS – The total alkaloid was analyzed by combined Gas chromatography-mass spectrometry. Fragmentation patterns were compared with published data (6,13,14,19, 20). Three bases could be identified as follows: ammodendrine, mass spectrum m/z (rel. int.) 208 ([M]⁺ 48), 179(41). 165(100), 137 (40), 136(50), 110

(78), 109(65), 43(45), t_R 11.7, relative % composition 83.6.

N-acetyl hystrine: mass spectrum m/z (rel. int.) 206([M]⁺62), 163(100), 135(15), 108(32), 43(41), t_R 12.45, relative % composition 12.18.

N-formyl ammodendrine: mass spectrum m/z (rel. int.) 236([M]⁺10), 218(100), 208(22), 175(66), 150(32), 122(29), 43(21), t_R 14.26, relative % composition 3.02.

Isolation of alkaloids – The mixture of bases (5 gm) was chromatographed on a silica gel-packed column (Merck, type 60, 230-400 mesh, 200 g) and gradient elution using MeOH in CH₂Cl₂-28% NH₄OH (500:1) as reported in previous papers (4-5). Compound A₁ (1.1 gm) was eluted with 7% MeOH in CH₂Cl₂-28% NH₄OH (500:1). Fractions enriched in compound A₂ (82 mg) were eluted with 8% MeOH in CH₂Cl₂-28% NH₄OH (500:1) together with A₁. Pure A₂ (8 mg) was obtained from these fractions by further purification on preparative TLC (Silica gel, Kiselgel 60, F254, 0.5 mm layer thickness) in Et₂O-MeOH-28% NH₄OH (17:2:1).

(+)-Ammodendrine (A₁); pale yellow oil, $[\alpha]_D^{26}$ +7.5°(EtOH, c. 0.30) UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 318, 241; $\text{IRV}_{\text{max}}^{\text{CHCl3}}$ cm⁻¹: 1642(carbamido group), 1425 (C = C); ¹H NMR (CDCl₃, 400 MHz), 7.14, 6.54(1H, s, H-6), 3.55(1H, m, H-2), 3.01(2H, dm, H-2',6'_{eq}), 2.62(1H, m, H-6'_{ax}), 2.1, 2.06(3H, s, CH₃), ¹³C-NMR (CDCl₃, 100 MHz): as reported in (Saito *et al.*, 1989).

(+)-*N*-acetyl hystrine (A_2); colorless oil, $[\alpha]_D^{26} + 11^{\circ}$ (EtOH, c. 0.08); IRV_{max}^{CHCl3} cm⁻¹: 1640(carbamido group), 1430 (C=C); ¹H-NMR (CDCl₃, 400 MHz), 7.18, 7.78(1H, s, H-6), 3.63(2H, m, 2H-6'), 2.02(3H, s, CH₃); EIMS for A_1 , A_2 : identical to those mentioned under GC-MS.

Some of ${}^{1}H$ NMR spectral peaks of A_1 , A_2 are doubled because of the presence of two conformer

Vol. 6, No. 4, 2000

isomers from restricted rotation about N-Ac bond.

Identification procedures - Mps. Uncorr. IR; in CHCl₃ or KBr; optical rotations: 10 cm path length in the solvent stated; ¹H-NMR and ¹³C-NMR: 400 and 100 MHz, respectively. TMS was used as internal standard in CDCl₃ and CD₃OD; EIMS: 70 ev.; FAB-MS: Kratos MS-25 using xenon as a bombardment gas and glycerol as a viscus matrix. TLC: Silica gel (kiselgel 60, F254) of 0.25 mm layer thickness in CH₂Cl₂-MeOH-28% NH₄OH (43:6:1)^a, Et₂O-MeOH-28% NH₄OH (17:2:1)^b and EtOAc-MeOH-H₂O (10: 1:0.8)°. GC/MS was performed with Hewlett-Packard 598011/5971A, EI-MS (probe, 70eV), equipped with DB-1 (0.25 mm×30 m) (J & W Scientific Co.) column using He as a carrier gas (0.6 ml/min.). The oven was kept for 2 min. at 100°, then programmed at 15°/ min.to 300°, hold for 5 min.

Results and Discussion

Fractionation of the ethyl acetate fraction of the ethanolic extract of the aerial parts of *Spartidium saharae* on Diaion HP-20 followed by silica gel column chromatography, afforded two major compounds $\mathbf{F_1}$ and $\mathbf{F_2}$. The isolated compounds gave positive tests for flavonoid glycosides (Markham, 1982). $\mathbf{F_2}$ was identified as (+)-8-C- β -D-glucopyranosyl genistein on basis of mp, $[\infty]^D$, IR, MS, 1 H-NMR and 1 3C-NMR as reported previously (Heerden *et al.*, 1980). It is first reported in the title plant.

F₁ was isolated as amorphous solid, mp 218-220°. The UV spectrum of \mathbf{F}_1 in methanol displayed λ_{max} at 258 nm and a shoulder at 320 nm, typical of an isoflavone type (Markham, 1982). The IR spectrum suggested the presence of hydroxyl (3400 cm⁻¹), carbonyl (1640 cm⁻¹) and aromatic (1615, 1580 cm-1) groups. The HR-FABMS afforded an $[M+H]^+$ m/z 447.1290, corresponding to $C_{22}H_{23}O_{10}$ (calcd. 447.1291). The EIMS spectrum of F₁ afforded fragment ions at m/z 429&415, corresponding to [M-OH]⁺ and [M-OCH₃]⁺, respectively. Also fragment ion at m/z 297 is consistent with aglycone fragment containing CH₂-reminant of the C-linked sugar, indicating the presence of C-glucoside (Oelrichs et al., 1968). The retro-Diels-Alder cleavage of the latter fragment was observed at m/z 165 indicating the presence of two hydroxyl groups in ring-A and also at m/z 132 supported the presence of one methoxyl group in ring-B. The ¹H-NMR and ¹³C-NMR spectra of $\mathbf{F_1}$ and $\mathbf{F_2}$ are almost the same (Table 1), except for the presence of OMe group in \mathbf{F}_1 at δ 3.78 and 56.4 ppm.

Acid hydrolysis of both **F**₁ and **F**₂ with dil HCl failed to give any sugar product or aglycone while FeCl₃ oxidation (Markham, 1982) afforded glucose confirming the presence of C-glucopyranoside unit.

From all the foregoing chemical and spectroscopic evidences, it can therefore be established that, the new compound \mathbf{F}_1 is (+)-4'-O-methyl-8-C- β -D-glucopyranosylgenistein.

The alkaloid profile of 75% ethanol extract of the dried aerial parts of Spartidium saharae is clarified using combined gas chromatography-mass spectrometry. Three bases could be identified on the basis of their mass spectra and fragmentation pattern viz. ammodendrine, N-acetyl hystrine and N-formyl ammodendrine. Only two bases could be isolated by repeated silica gel column chromatography and completely identified as (+)-ammodendrine A_1 and (+)-N-acetyl hystrine A_2 on the basis of physicochemical properties and spectral data including [∞]^D, IR, MS, ¹H-NMR and ¹³C-NMR as reported previously (Bourquin et al., 1987; Abdel-Halim et al., 1997; Saito et al., 1989; Fitch et al., 1974). The presence of N-formyl ammodendrine in trace amount precludes its separation and characterization by other spectral techniques. N-formyl ammodendrine is first reported

Table 1. ¹H-NMR and ¹³C-NMR spectra (ppm from TMS) of F₁ & F₂ in CD₃OD

011101211 03302				
Carbon	F_1		F ₂	
No.	¹ H-NMR	¹³ C-NMR	¹ H-NMR	¹³ C-NMR
2	8.0s	153.3	8.08 <i>s</i>	154.9
2 3		124.7	0.003	
4		180.9		124.7 182.1
5		162.5		162.7
6	6.4 <i>s</i>	97.5	(2	
7		163.9	6.3 <i>s</i>	98.1
8		105.7		164.9
9		158.6		106.8
10		104.0		159.1
1'		124.4		104.6
2',6'	7.3 d (8.5) 131.5	7.22 1/0	123.5
3',5'	6.8 d(8.5)	116.1	7.32 d(8.	,
4'	, ,	158.6	6.8 d(8.5)	,
Glc-1"	3.4-3.7 m	75.7	2520	159.1
2"		73.0	3.5-3.8 n	
3"		80.1		73.1
4"		71.7		80.4
5"		82.7		72.1
6"		62.8		82.9 63.2
OMe	3.78s			

J in Hz between parentheses

in the title plant.

On the bases of our present study, Spartidium saharae yields apperciable quantities of isoflyones which are quite common in Genista species. However, the alkaloid content in Spartidium saharae, ammodendrine, N-acetyl hystrine, N-formyl ammodendrine, was found to be confined principally to dipiperidine alkaloids. TLC, GC and GC-MS make sure that the Lybian Spartidium saharae is free from sparteine or α -pyridone-type alkaloids, in contrary to the Algerian one reported before (Bourquin et al., 1987). Lupin alkaloids might be considered as systematic marker for chracterization of closely related genera (Kinghorn and Balendrin, 1984). Most Genista species accumulate mainly, sparteine- and α-pyridone -types alkaloids, while few species accumulate in addition, small amount of simple dipiperdine alkaloids (Kinghorn and Balendrin, 1984; Harborne et al., 1971; Faugeras, 1971). Thus, the presence of high yield of the dipiperdine alkaloids in the title plant is likely to receive attention as potential taxonomic marker for Spartidium.

The cytotoxic activity of the alcoholic extract of *Spartidium saharae* showed a moderate activity against mouse P388 leukemia cells with IC₅₀ 11 μgml⁻¹. However, none of the isolated compounds has displayed a significant cytotoxic activity.

Acknowledgments

The authors are greatly indebted to Dr. Fumio Ikegami, Faculty of Pharmaceutical Sciences, Chiba University, Chiba, Japan, for carrying out the GC-MS analysis, Prof. Dr. Hedji Itokawa, Tokyo College of Pharmacy, Tokyo, Japan for operating the cytotoxic activity and Mrs. Nadia Hashish, School of Pharmacy, Univ. of Minnesota, Minneapolis, U.S.A., for recording the HR-FABMS.

References

- Abdel-Halim, O. B. Sekine, T. Saito, K., Halim, A. F., Abdel-Fatteh, H. and Murakoshi, I. (+)-12α-Hydroxylupanine, a lupin alkaloid from *Lygos raetam* var. sarcocarpa. Phytochemistry 31, 3251-3253 (1992a).
- Abdel-Halim, O. B. Sekine, Halim, A. F., Abdel-Fatteh, H., Saito, K. Oghata K. and Murakoshi, I. Reconfirmation of the structure of (+)-retamine from Lygos raetam var. sarcocarpa by x-ray analysis. Phytochemical Analysis 6, 302-305 (1995).
- Abdel-Halim, O. B. (–)-6α-Hydroxylupanine from Lygos

- raetam var. sarcocarpa. Phytochemistry 40, 1323-1325 (1995).
- Abdel-Halim, O. B., Abdel-Fatteh, H., Halim, A. F., and Murakoshi, I. (+)-Sparteine N-16-oxide, a lupin alkaloid from *Lygos raetam* var. *sarcocarpa*. *Acta Pharmaceutica Hungrica* **67**, 9-16 (1997).
- Abdel-Halim, O. B. Ikegami F., Halim, A. F., Abdel-Fatteh, H. Arai J., Fujii, Y., Sekine and Murakoshi, I. Inhibitory effects of some 8-prenyl flavones, isolated from *Tephorsia apollinea* on platlet aggregation. Thai, *J. Pharm. Sci.* **16**, 3-9 (1992b).
- Bourquin D., Brenneisen R. and Wicky, K. Alkaloids of *Spartidium saharae* (Coss. et Dur.) Pomel (Fabaceae). *Pharm. Acta Helv.* **62**, 297-301 (1987).
- Faugeras, G. Alkaloids and polyphenols of Leguminosaea XXII. The Alkaloids of *Genista cinerea* DC. *Annales Pharmaceutiques Francais* **29**, 241-258 (1971).
- Fitch, W. L., Dolinger P. M. and Dgerassi, C. Alkaloid studies LXVIII. Novel piperidyl alkaloids from *lupi-nus formosus*. J. Org. Chem. 39, 2974-2979 (1974).
- Harborne, J. B., Boulter, D. and Truner B. L. Chemotaxonomy of the Leguminosae. P. 88, Academic Press, Lodon and New York, 1971.
- Heerden F. V., Brandt E. V. and Roux, D. G. Synthesis of pyranisoflavonoid. Heminitidulan. isoflavonoid and rotenoid glycosides from the bark of *Dalbergia* nitidula Welw. ex. Bak. J. Chem. Soc., Perkin Trans. 1, 2463-2469 (1980).
- Jafri, S. M. and El-Gaadi, A. Flora of Libya. Al-Faateh University, Faculty of Sciences Publication, 86, P.15. Tripoli, 1980.
- Kinghorn, A. D. and Balandrin, M. F. Quinolizidine alkaloids of the leguminosae. P. 132, In Pelletier, S. W. Alkaloids: Chemical and Biological Prespectives. Volume 2, John Wiley & Sons, Inc., N. Y. 1984.
- Markham, K. R. Technique of flavonoid identification. p. 36. Academic Press, London, 1982.
- Oelrichs P., Marshall J.T. B. and Williams, D. H. 7-*O*-β-D-Gluocosyl-8-*C*-β-D-glucosyl-4-*O*-methylapigenin, A new flavone from Trema aspera *J. Chem. Soc.* (C), 941-945 (1968).
- Saito K., Yoshino, T., Sekine, T., Ohmiya, S., Kubo, H., Otomasu, H., and Murakoshi, I, Isolation of (+)-Maackiamine (Norammodendrine) from the flowers of *Maackia amurensis*. *Phytochemistry* 28, 2533-2534 (1989).
- Twentyman, P. R. and Luscombe M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. *Br. J. Cancer* **56**, 279-285 (1987).

(Accepted September 22, 2000)