DOI QR코드

DOI QR Code

An Eccentric Degenerated Shell Element for the Geometrically Nonlinear Analysis of Stiffened Structures

보강된 구조물의 기하학적 비선형 해석을 위한 편심 응축 셸 요소

  • Published : 2000.07.01

Abstract

An eccentric degenerated shell element with geometric non-linearity for the precise and efficient analysis of stiffened shell structures is developed. To deal with the eccentricity, we define the e ccentric shell and the master shell that constitute one combined shell. It is assumed that the sections remain plane after deformation. The internal force vector and the tangent stiffness matrix based on the virtual work principle in the natural coordinate system are derived. To enhance the robustness of the element, assumed strain method for transverse shear and membrane strains is used. Through numerical experiments the effectiveness of the proposed element is demonstrated.

Keywords

References

  1. Boot, J. C. and Moore, D. B., 1988, 'Stiffened Plates Subjected to Transverse Loading,' International Journal of Solids and Structures, Vol. 24, No. 1, pp. 89-104 https://doi.org/10.1016/0020-7683(88)90101-1
  2. Holopainen, T. P., 1995, 'Finite Element Free Vibration Analysis of Eccentrically Stiffened Plates,' Computers & Structures, Vol. 56, No. 6, pp. 993-1007 https://doi.org/10.1016/0045-7949(94)00574-M
  3. Gruttmann, F., Sauer, R. and Wagner, W., 1998, 'A Geometrical Nonlinear Eccentric 3D Beam Element with Arbitrary Cross Sections,' Computer Methods in Applied Mechanics and Engineering, Vol. 160, pp. 383-400 https://doi.org/10.1016/S0045-7825(97)00305-8
  4. Jiang, W., Bao, G. and Roberts, J. C., 1997, 'Finite Element Modeling of Stiffened and Unstiffened Orthotropic Plates,' Computers & Structures, Vol. 63, No. 1, pp. 105-117 https://doi.org/10.1016/S0045-7949(96)00277-5
  5. Bushnell, D., 1987, 'Theoretical Basis of the PANDA Computer Program for Preliminary Design of Stiffened Panels under Combined in-plane Loads,' Computers & Structures, Vol. 27, No. 4, pp. 541-563 https://doi.org/10.1016/0045-7949(87)90280-X
  6. Bushnell, D., 1987, 'Nonlinear Equilibrium of Imperfect, Locally Deformed Stringer Stiffened Panels under Combined in-plane Load,' Computers & Structures, Vol. 27, No. 4, pp. 519-539 https://doi.org/10.1016/0045-7949(87)90279-3
  7. Bushnell, D., 1993, 'Optimization of Composite Stiffened, Imperfect Panels under Combiner Loads for Service in the Post Buckling Regime,' Computer Methods in Applied Mechanics and Engineering, Vol. 103, pp. 43-114 https://doi.org/10.1016/0045-7825(93)90041-U
  8. Stiftinger, M. A.,Skrna-Jakl, I. C. and Rammerstorfer, F. G, 1995, 'Buckling and Postbuckling Investigations of Imperfect Curved Stringer-Stiffened Composite Shells. Part B: Computational Investigation,' Thin-Walled Structures, Vol. 23, pp. 339-350 https://doi.org/10.1016/0263-8231(95)00021-5
  9. Parish, H., 1991, 'An Investigation of a Finite Rotation Four Node Assumed Strain Shell Element,' International Journal for Numerical Methods in Engineering, Vol. 31, pp. 127-150 https://doi.org/10.1002/nme.1620310108
  10. Brank, B, Peric, D. and Damjanic, F. B., 1995, 'On Implementation of a Nonlinear Four Node Shell Finite Element for Thin Multilayered Elastic Shells,' Computational Mechanics, Vol. 6,pp. 341-359 https://doi.org/10.1007/BF00350723
  11. Cardona, A. and Geradin, M, 1988, 'A Beam Finite Element Nonlinear Theory with Finite Rotations,' International Journal for Numerical Methods in Engineering, Vol. 26, pp. 2404-2438 https://doi.org/10.1002/nme.1620261105
  12. Lee, S. J. and Kanok-Nukulchai, W., 1998, 'A Nine-Node Assumed Strain Finite Element for Large Deformation Analysis of Laminated Shells,' International Journal for Numerical Methods in Engineering, Vol. 42, pp. 777-798 https://doi.org/10.1002/(SICI)1097-0207(19980715)42:5<777::AID-NME365>3.0.CO;2-P
  13. Dvorkin, E. N. and Bathe, K. J, 1984, 'A Continuum Mechanics Based Four Node Shell Element for General Nonlinear Analysis,' Engineering Computations, Vol. 1, pp. 77-88
  14. Choi, C. K. and Paik, J. G., 1996, 'An Efficient Four Node Degenerated Shell Element for Geometrically Nonlinear Analysis,' Thin-Walled Structures, Vol. 24, pp. 261-283 https://doi.org/10.1016/0263-8231(95)00037-2
  15. Voros, G. M.,1988, 'A Special Purpose Element For Shell-Beam Systems,' Computers & Structures, Vol. 29, No. 2, pp. 301-308 https://doi.org/10.1016/0045-7949(88)90263-5
  16. Timoshenko, S. and MacCullough, G. H., 1940, Elements of Strength of Materials, Chap. XI, 2nd ed., D. Van Nostrand Company, INC.