Journal of Natural Science Pai Chai University, Korea Vol. 11, No. 1:15 17, 1998

SLLN for Pairwise Independent Random Variables

Soo Hak Sung

Department of Applied Mathematics, Pai Chai University

Let $\{f(n)\}\$ be an increasing sequence such that f(n)>0 for each n and $f(n)\to\infty$. Let $\{X_n, n \ge 1\}\$ be a sequence of pairwise independent random variables. In this paper we give sufficient conditions

on $\{X_n, n \ge 1\}$ such that $\sum_{i=1}^n (X_i - EX_i)/f(n)$ converges to zero almost surely.

 $\{f(n)\} \qquad f(n) \to \infty \qquad \{X_n, n \ge 1\}$

 $\sum_{i=1}^{n} (X_{i} - EX_{i})/f(n) = 0 \qquad 1 \qquad \{X_{n}, n \ge 1\}$

Key words : Strong law of large numbers, pairwise independent random variables, almost sure convergence

. Introduction

Let $\{f(n)\}\$ be an increasing sequence such that f(n)>0 for each n and $f(n)\rightarrow\infty$. Let $\{X_n, n\geq 1\}\$ be a sequence of pairwise independent random variables. Recently, Sung[3] proved a SLLN(Strong Law of Large Numbers) for pairwise independent and identically distributed(pairwise i.i.d.) random variables.

Theorem 1.1. (Sung, 1997). Let $\{X_n, n \ge 1\}$

be pairwise i.i.d. random variables and let $b_n = f(n)$ for all $n \ge 1$. Assume that

(a) $x/f(x) \uparrow$; (b) $f(x)/\log^2 x \uparrow \infty$; (c) $b_n^2 \sum_{i=n}^{\infty} 1/b_i^2 = O(n)$; (d) $b_n^2 (\sum_{i=n}^{\infty} \log^2 i/b_i^2)/\log^2 n = O(n)$; (e) $(\sum_{i=1}^n b_i/i)/b_n = O(1)$; (f) $C_1 \le b_n^2 / \{nf(b_n)\} \le C_2$ for some

constants
$$C_1 > 0$$
 and $C_2 > 0$;
(g) $b_n^2 / \{f(b_n / \log^2 n) n \log^2 n\} \ge C_3$
for some constant $C_3 > 0$.

Then $E[X_{1}^{2}/f(|X_{1}|)] < \infty$ implies $\sum_{i=1}^{n} (X_{i} - EX_{i})/b_{n} \rightarrow 0 \text{ almost surely.}$

In this paper, we will obtain a SLLN for pairwise independent, but not necessarily identically distributed, random variables. Furthermore, our result implies Theorem 1.1.

. Main Result

To prove our main result, we need the following lemma which is well known (Loeve, 1997, p. 124).

Lemma 2.1. Let $\{X_n, n \ge 1\}$ be a sequence of orthogonal random variables. If $\sum_{n=1}^{\infty} \log^2 n E X_n^2 < \infty$, then $\sum_{n=1}^{\infty} X_n$ converges almost surely.

Chandra and Goswami (Chandra and Goswami, 1992) proved a SLLN for pairwise independent random variables.

Lemma 2.2. (Chandra and Goswami, 1992). Let $\{X_n, n \ge 1\}$ be a sequence of pairwise independent random variables and let $b_n = f(n)$ for all $n \ge 1$. Assume that

(i)
$$\sum_{i=1}^{\infty} E|X_i - EX_i| / b_n \le C$$
 for some constant
 $C > 0;$
(ii) $\sum_{n=1}^{\infty} Var(X_n) / b_n^2 < \infty$.
Then $\sum_{i=1}^{n} (X_i - EX_i) / b_n \rightarrow 0$ almost surely.

Now, we state and prove our main result.

Theorem 2.3. Let $\{A_n\}$, $\{B_n\}$, $\{C_n\}$ be sequences of Borel subsets in R^1 such that $A_n \bigcup B_n \bigcup C_n = R^1, A_n \bigcap B_n = B_n \bigcap C_n$ $= A_n \bigcap C_n = \emptyset$ for each $n \ge 1$. Let $\{X_n, n \ge 1\}$ be a sequence of pairwise independent random variables and let $b_n = f(n)$ for all $n \ge 1$. Assume that

(i)
$$\sum_{n=1}^{\infty} P(X_n \in C_n) < \infty;$$

(ii)
$$\sum_{i=1}^{n} EX_i I(X_i \in C_i) / b_n \rightarrow 0;$$

(iii) $\sum_{i=1}^{n} E|X_{i}| |I(X_{i} \in B_{i})/b_{n} \leq C \quad \text{for some}$ constant C > 0;

(iv)
$$\sum_{n=1}^{\infty} Var(X_n I(X_n \in B_n)) / b_n^2 < \infty;$$

(v)
$$\sum_{n=1}^{\infty} \frac{\log^2 n}{b_n^2} \operatorname{Var}(X_n I(X_n \in A_n)) < \infty.$$

Then
$$\sum_{i=1}^{n} (X_i - EX_i) / b_n \rightarrow 0$$
 almost surely.

Proof. Note that for each $n \ge 1$

$$X_n = X_n I(X_n \in A_n) + X_n I(X_n \in B_n)$$
$$+ X_n I(X_n \in C_n).$$

It follows by condition (v) that

$$\sum_{n=1}^{\infty} \log^2 n \ E\left(\frac{X_n I(X_n \in A_n) - EX_n I(X_n \in A_n)}{b_n}\right)^2 =$$
$$\sum_{n=1}^{\infty} \frac{\log^2 n}{b_n^2} \ Var(X_n I(X_n \in A_n)) < \infty$$

By Lemma 2.1, we have that

$$\sum_{n=1}^{\infty} \frac{X_n I(X_n \in A_n) - EX_n I(X_n \in A_n)}{b_n}$$

converges almost surely, which implies

$$\frac{1}{b_n} \sum_{i=1}^n (X_i I(X_i \in A_i) - EX_i I(X_i \in A_i)) \rightarrow 0$$

almost surely (1)

by the Kronecker lemma. Conditions (iii) and

(iv) imply

$$\frac{1}{b_n} \sum_{i=1}^n (X_i I(X_i \in B_i) - EX_i I(X_i \in B_i)) \rightarrow 0$$

almost surely (2)

by Lemma 2.2. Condition (i) implies

$$\frac{1}{b_n} \sum_{i=1}^n X_i I(X_i \in C_i) \rightarrow 0 \quad \text{almost surely} \quad (3)$$

by the Borel-Cantelli lemma. Combining (1), (2), (3), and (ii) implies the result.

The following corollary was proved by (Chandra and Goswami, 1992)

Corollary 2.4. Let $\{X_n, n \ge 1\}$ be a sequence of pairwise independent random variables such that there is a sequence $\{B_n\}$ of Borel subsets in R^1 satisfying the following conditions:

(i)
$$\sum_{n=1}^{\infty} P(X_n \in B_n^c) < \infty;$$

(ii)
$$\sum_{i=1}^n E(X_i I(X_i \in B_i^c)) / b_n \rightarrow 0;$$

(iii)
$$\sum_{i=1}^{n} E|X_{i}| |I(X_{i} \in B_{i})/b_{n} \leq C \quad \text{for some}$$

constant $C > 0$;

(iv)
$$\sum_{n=1}^{\infty} Var(X_n I(X_n \in B_n)) / b_n^2 < \infty;$$

Then $\sum_{i=1}^{n} (X_i - EX_i) / b_n \rightarrow 0$ almost surely.

Proof. Let $A_n = \emptyset$, $C_n = B_n^c$ for all $n \ge 1$. Then the result follows easily by Theorem 2.3.

Remark. Under the conditions of Theorem 1.1, $E[X_{1}^{2}/f(|X_{1}|)] < \infty \Leftrightarrow \sum_{n=1}^{\infty} P(|X_{1}| > b_{n}) < \infty.$

Taking
$$A_n = \left[-\frac{b_n}{\log^2 n}, \frac{b_n}{\log^2 n}\right],$$

$$B_n = \begin{bmatrix} -b_n, -\frac{b_n}{\log^2 n} \end{bmatrix} \bigcup \begin{bmatrix} \frac{b_n}{\log^2 n}, b_n \end{bmatrix},$$

$$C_n = \begin{pmatrix} -\infty, -b_n \end{pmatrix} \bigcup \begin{pmatrix} b_n, \infty \end{pmatrix}, \text{ Theorem}$$

1.1 follows by Theorem 2.3. So Theorem 2.3 is an extension of Theorem 1.1.

. Acknowledgment

This study was financially supported by a Central Research Fund for the year of 1998 from Pai Chai University.

. References

- Chandra, T. K. and A. Goswami. 1992. Cesaro uniform integrability and the strong law of large numbers. *Sankhya, Series A*, 54: 215 - 231.
- Loeve, M. 1977. Probability Theory . 4th ed., Springer-Verlag, New York. 413 pp.
- Sung, S. H. 1997. On the strong law of large numbers for pairwise i.i.d. random variables. *Bull. Korean Math. Soc.*, 34. pp. 617 - 626.