SLLN for Pairwise Independent Random Variables

Soo Hak Sung
Department of Applied Mathematics, Pai Chai University

쌍별독립인 확률변수에 대한 대수의 강법칙

성수학
배재대학교 응용수학과

$$
\begin{aligned}
& \text { Let }\{f(n)\} \text { be an increasing sequence such that } f(n)>0 \text { for each } n \text { and } f(n) \rightarrow \infty \text {. Let } \\
& \left\{X_{n}, n \geq 1\right\} \text { be a sequence of pairwise independent random variables. In this paper we give sufficient conditions } \\
& \text { on }\left\{X_{n}, n \geq 1\right\} \text { such that } \sum_{i=1}^{n}\left(X_{i}-E X_{i}\right) / f(n) \text { converges to zero almost surely. } \\
& \{f(n)\} \text { 은 양의 수열로 } f(n) \rightarrow \infty \text { 이며 }\left\{X_{n}, n \geq 1\right\} \text { 은 쌍별독립인 확률변수 열일 때 정규화된 부분 } \\
& \text { 합 } \quad \sum_{i=1}^{n}\left(X_{i}-E X_{i}\right) / f(n) \quad \text { 이 } 0 \text { 에 수렴할 확률이 } 1 \text { 이 되는 }\left\{X_{n}, n \geq 1\right\} \text { 의 조건을 찾고자 한다. }
\end{aligned}
$$

Key words : Strong law of large numbers, pairwise independent random variables, almost sure convergence

I. Introduction	be pairwise ii.d. random variables and let $b_{n}=f(n)$ for all $n \geq 1$. Assume that
Let $\{f(n)\}$ be an increasing sequence such	(a) $x / f(x) \uparrow$;
that $f(n)>0$ for each n and $f(n) \rightarrow \infty$. Let	(b) $f(x) / \log ^{2} x \uparrow \infty$;
$\left\{X_{n}, n \geq 1\right\}$ be a sequence of pairwise	(c) $b_{n}^{2} \sum_{i=1}^{\infty} 1 / b_{i}^{2}=O(n)$;
independent random variables. Recently,	
Sung[3] proved a SLLN(Strong Law of Large Numbers) for pairwise independent and	(d) $b_{n}^{2}\left(\sum_{i=n}^{\infty} \log ^{2} i / b_{i}^{2}\right) / \log ^{2} n=O(n)$;
identically distributed(pairwise i.i.d.) random variables.	(e) $\left(\sum_{i=1}^{n} b_{i} / i\right) / b_{n}=O(1)$;
Theorem 1.1. (Sung, 1997). Let $\left\{X_{n}, n \geq 1\right\}$	(f) $C_{1} \leq b_{n}^{2} /\left\{n f\left(b_{n}\right)\right\} \leq C_{2} \quad$ for \quad some

constants $\quad C_{1}>0$ and $C_{2}>0$;
(g) $b_{n}^{2} /\left\{f\left(b_{n} / \log ^{2} n\right) n \log ^{2} n\right\} \geq C_{3}$ for some constant $\quad C_{3}>0$.

Then $\quad E\left[X_{1}^{2} / f\left(\left|X_{1}\right|\right)\right]<\infty \quad$ implies $\sum_{i=1}^{n}\left(X_{i}-E X_{i}\right) / b_{n} \rightarrow 0 \quad$ almost surely.

In this paper, we will obtain a SLLN for pairwise independent, but not necessarily identically distributed, random variables. Furthermore, our result implies Theorem 1.1.

II. Main Result

To prove our main result, we need the following lemma which is well known(Loeve, 1997, p. 124).

Lemma 2.1. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of orthogonal random variables. If $\sum_{n=1}^{\infty} \log ^{2} n E X_{n}^{2}<\infty$, then $\sum_{n=1}^{\infty} X_{n}$ converges almost surely.

Chandra and Goswami (Chandra and Goswami, 1992) proved a SLLN for pairwise independent random variables.

Lemma 2.2. (Chandra and Goswami, 1992). Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of pairwise independent random variables and let $b_{n}=f(n)$ for all $n \geq 1$. Assume that
(i) $\sum_{i=1}^{n} E\left|X_{i}-E X_{i}\right| / b_{n} \leq C$ for some constant $C>0$;
(ii) $\sum_{n=1}^{\infty} \operatorname{Var}\left(X_{n}\right) / b_{n}^{2}<\infty$.

Then $\sum_{i=1}^{n}\left(X_{i}-E X_{i}\right) / b_{n} \rightarrow 0 \quad$ almost surely.

Now, we state and prove our main result.

Theorem 2.3. Let $\left\{A_{n}\right\},\left\{B_{n}\right\},\left\{C_{n}\right\}$ be sequences of Borel subsets in R^{1} such that $\quad A_{n} \cup B_{n} \cup C_{n}=R^{1}, A_{n} \cap B_{n}=B_{n} \cap C_{n}$ $=A_{n} \cap C_{n}=\varnothing$ for each $n \geq 1$. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of pairwise independent random variables and let $b_{n}=f(n)$ for all $n \geq 1$. Assume that
(i) $\sum_{n=1}^{\infty} P\left(X_{n} \in C_{n}\right)<\infty ;$
(ii) $\sum_{i=1}^{n} E X_{i} I\left(X_{i} \in C_{i}\right) / b_{n} \rightarrow 0$;
(iii) $\quad \sum_{i=1}^{n} E\left|X_{i}\right| I\left(X_{i} \in B_{i}\right) / b_{n} \leq C \quad$ for some constant $C>0$;
(iv) $\sum_{n=1}^{\infty} \operatorname{Var}\left(X_{n} I\left(X_{n} \in B_{n}\right)\right) / b_{n}^{2}<\infty$;
(v) $\sum_{n=1}^{\infty} \frac{\log ^{2} n}{b_{n}^{2}} \operatorname{Var}\left(X_{n} I\left(X_{n} \in A_{n}\right)\right)<\infty$.

Then $\quad \sum_{i=1}^{n}\left(X_{i}-E X_{i}\right) / b_{n} \rightarrow 0$ almost surely.

Proof. Note that for each $n \geq 1$

$$
\begin{aligned}
X_{n}= & X_{n} I\left(X_{n} \in A_{n}\right)+X_{n} I\left(X_{n} \in B_{n}\right) \\
& +X_{n} I\left(X_{n} \in C_{n}\right)
\end{aligned}
$$

It follows by condition (v) that

$$
\sum_{n=1}^{\infty} \log ^{2} n E\left(\frac{X_{n} I\left(X_{n} \in A_{n}\right)-E X_{n} I\left(X_{n} \in A_{n}\right)}{b_{n}}\right)^{2}=
$$

$$
\sum_{n=1}^{\infty} \frac{\log ^{2} n}{b_{n}^{2}} \operatorname{Var}\left(X_{n} I\left(X_{n} \in A_{n}\right)\right)<\infty
$$

By Lemma 2.1, we have that $\sum_{n=1}^{\infty} \frac{X_{n} I\left(X_{n} \in A_{n}\right)-E X_{n} I\left(X_{n} \in A_{n}\right)}{b_{n}}$ converges almost surely, which implies

$$
\begin{align*}
& \frac{1}{b_{n}} \sum_{i=1}^{n}\left(X_{i} I\left(X_{i} \in A_{i}\right)-E X_{i} I\left(X_{i} \in A_{i}\right)\right) \rightarrow 0 \\
& \text { almost surely } \tag{1}
\end{align*}
$$

by the Kronecker lemma. Conditions (iii) and
(iv) imply
$\frac{1}{b_{n}} \sum_{i=1}^{n}\left(X_{i} I\left(X_{i} \in B_{i}\right)-E X_{i} I\left(X_{i} \in B_{i}\right)\right) \rightarrow 0$
almost surely
by Lemma 2.2. Condition (i) implies

$$
\begin{equation*}
\frac{1}{b_{n}} \sum_{i=1}^{n} X_{i} I\left(X_{i} \in C_{i}\right) \rightarrow 0 \quad \text { almost surely } \tag{3}
\end{equation*}
$$

by the Borel-Cantelli lemma. Combining (1), (2), (3), and (ii) implies the result.

The following corollary was proved by (Chandra and Goswami, 1992)

Corollary 2.4. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of pairwise independent random variables such that there is a sequence $\left\{B_{n}\right\}$ of Borel subsets in R^{1} satisfying the following conditions:
(i) $\sum_{n=1}^{\infty} P\left(X_{n} \in B_{n}^{c}\right)<\infty ;$
(ii) $\sum_{i=1}^{n} E\left(X_{i} I\left(X_{i} \in B_{i}^{c}\right)\right) / b_{n} \rightarrow 0$;
(iii) $\sum_{i=1}^{n} E\left|X_{i}\right| I\left(X_{i} \in B_{i}\right) / b_{n} \leq C \quad$ for some constant $C>0$;
(iv) $\sum_{n=1}^{\infty} \operatorname{Var}\left(X_{n} I\left(X_{n} \in B_{n}\right)\right) / b_{n}^{2}<\infty$;

Then $\sum_{i=1}^{n}\left(X_{i}-E X_{i}\right) / b_{n} \rightarrow 0 \quad$ almost surely.

Proof. Let $A_{n}=\varnothing, C_{n}=B_{n}^{c}$ for all $n \geq 1$. Then the result follows easily by Theorem 2.3.

Remark. Under the conditions of Theorem 1.1, $E\left[X_{1}^{2} / f\left(\left|X_{1}\right|\right)\right]<\infty \Leftrightarrow \sum_{n=1}^{\infty} P\left(\left|X_{1}\right|>b_{n}\right)<\infty$.

Taking

$$
A_{n}=\left[-\frac{b_{n}}{\log ^{2} n}, \frac{b_{n}}{\log ^{2} n}\right]
$$

$$
B_{n}=\left[-b_{n},-\frac{b_{n}}{\log ^{2} n}\right) \bigcup\left(\frac{b_{n}}{\log ^{2} n}, b_{n}\right]
$$

$$
C_{n}=\left(-\infty,-b_{n}\right) \quad \bigcup\left(b_{n}, \infty\right), \quad \text { Theorem }
$$

1.1 follows by Theorem 2.3. So Theorem 2.3 is an extension of Theorem 1.1.

III. Acknowledgment

This study was financially supported by a Central Research Fund for the year of 1998 from Pai Chai University.

IV. References

Chandra, T. K. and A. Goswami. 1992. Cesaro uniform integrability and the strong law of large numbers. Sankhya, Series A, 54: 215-231.
Loeve, M. 1977. Probability Theory II. 4th ed., Springer-Verlag, New York. 413 pp.
Sung, S. H. 1997. On the strong law of large numbers for pairwise i.i.d. random variables. Bull. Korean Math. Soc., 34. pp. 617-626.

