Journal of Natural Science Pai Chai University, Korea Vol. 11, No. 1:11 14, 1998

Equivariant Real Vector Bundles over a Circle

Sung Sook Kim Division of Natural Science, Pai Chai University

Equivariant Real Vector Bundles

Let G be a compact Lie group and let $\rho: G \to O(2)$ be a homomorphism. Denote by V the G-module associated with ρ and by S(V) the unit circle of V. In this paper, we show that if G is abelian, then a real G -vector bundle over S(V) is isomorphic to Whitney sum of real G -line or G -plane bundles.

G가	compact Lie	$\rho: G \rightarrow 0$	0(2) 가 1	homomorphism	<i>G</i> 가 가	
	G-vector bundle	G - line	bundle	Whitney	G - plane	bundle
Whitney	isomorphic					

Key words : real G -vector bundle, equivariant vector bundle, G - plane bundle, Whitney sum.

. Decomposition

Let G be a compact Lie group and let ρ : $G \rightarrow O(2)$ be a homomorphism. If G is abelian, $\rho(G)$ is an abelian subgroup of O(2); so it is contained in SO(2) or isomorphic to D_1 or D_2 , where D_n denotes the dihedral subgroup of O(2) generated by the reflection matrix with respect to the x - axis and the rotation matrix of angle $2\pi/n$. When $\rho(G)$ is not contained in SO(2), we may assume that $\rho(G) = D_n$ (or O(2)). Denote by V the G-module associated with ρ and by S(V) the unit circle of V. Note that effectiveness of the G-action is equivalent to the injectivity of ρ .

Proposition A. (Kim, 1993). A real G-vector bundle over S(V) is isomorphic to Whitney sum of real G-line bundles if the G-action on S(V) is effective.

The effectiveness assumption cannot be dropped in the proposition above but we obtain the following result.

Proposition B. If G is abelian, then a real G-vector bundle over S(V) is isomorphic to Whitney sum of real G-line or G-plane bundles.

. Proof of Proposition B

Since the real G -line bundles are classified by (Kim and Masuda, 1994), we classify real G -plane bundles over S(V) when G is abelian.

Let S(V) be a real E G - plane bundle. Since the action of $H = \ker \rho$ on S(V) is trivial, the fibers of E define a real 2-dimensional H-module F. If F is irreducible, then the action of H induces a complex structure so that E becomes a complex G-line bundle, which is analyzed in (Cho et al.,). So we may assume that F is not irreducible. If F is the direct sum of non-isomorphic real 1 - dimensional Η modules, then E decomposes into Whitney sum of real G-line bundles accordingly. Therefore we may assume that Fis the direct sum of a same 1-dimensional H -module χ . Moreover we may assume that the G-action on E is effective. If χ is the trivial H -module, then H must be the trivial group by the effectiveness of the G- action on E; so the G - action on S(V)is effective. It follows from Proposition A that E decomposes into Whitney sum of real G -line bundles. Thus we may assume that χ is the nontrivial H -module and H is of order 2. We have a short exact sequence

$$(*)$$
 1 H $G \xrightarrow{\rho} \rho(G)$ 1.

If this exact sequence splits, then χ extended to a G-module $\tilde{\chi}$. A real G-line bundle $E \bigotimes_{\mathbb{R}} \tilde{\chi}$ has the trivial H-action. Making the G-action on the bundle effective, we may reduce to the case where the G-action on the base S(V) is effective. It follows again from Proposition A that E decomposes into Whitney sum of real G-line bundles. Thus we may assume that the exact sequence (*) does not split in the sequel.

We consider three cases.

Case 1. The case where $\rho(G) = D_1$. Since the exact sequence (*) dose not split, G must be isomorphic to \mathbb{Z}_4 . This case is studied in (Cho and Suh, 1997) in detail but we shall give a different argument for later's convenience. Since the G-action on E is effective, G acts on the fibers E_p and E_q as rotation; so their exterior products $\bigwedge^2 E_p$ and $\bigwedge^2 E_a$ are both trivial G -modules. This implies that a real G-line bundle $\bigwedge^2 E$ is trivial with fiber \mathbb{R} . Therefore one can choose a G-invariant nondegenerate 2 -form. This together with a G-invariant metric on E defines a G-invariant complex structure on E. Therefore E is realification of a complex G -line bundle. So there are two types of G -plane bundles by (Cho et al.,).

case 2. The case where $\rho(G) = D_2$. In this case G must be isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_2$. Let s and t denote element of G which are respectively of order 4 and 2 and generate G. There are four elements of order 4, those are s, s^3, st and s^3t . If all of them map to $-1 \in D_2$ by ρ , then 1, s^2 , t and s^2t are in $H = \ker \rho$ which contradicts that H is of order 2. Therefore we may assume that $\rho(s)$ is the reflection with respect to the x-axis. Then $\rho(t)$ is -1 or the reflection with the y-axis, but we may assume that $\rho(t)$ is the reflection with respect to the y-axis.

As observed in Case 1 $\bigwedge^2 E$ is trivial with fiber \mathbb{R} as $\langle s \rangle$ -line bundle where $\langle s \rangle$ denotes the order 4 subgroup of Ggenerate by s. If t preserves an orientation of E, then t acts trivially on fibers of $\bigwedge^2 E$; hence $\bigwedge^2 E$ is trivial with fiber \mathbb{R} as G-line bundle. Then as in case 1 one can choose a nondegenerate G-invariant 2-form on E so that E becomes a complex G-line bundle which is trivial by Theorem 2.2.

In the sequel we may assume that t reverses an orientation of E.

Claim. We identify \mathbb{C} with \mathbb{R}^2 . If t reverses an orientation of E, then E is isomorphic to a real G-plane bundle $S^1 \times \mathbb{C} \rightarrow S^1$ with G-action given by

 $s(z,v)=(\overline{z},i\overline{z}v), \quad t(z,v)=(-\overline{z},\overline{v}).$

Proof. As remarked above E admits a complex structure preserved by the action of s. Suppose that the $\langle s \rangle$ -complex line bundle structure on E is trivial. Then the orientations on E induced by the action of s at the $\langle s \rangle$ -fixed points agree. Since t commutes with s, this means that t preserves the orientation, which is a contradiction. Therefore the $\langle s \rangle$ -complex

line bundle structure on E is nontrivial. It follows from theorem 2.2 that we may assume that the action of s on $E (= S^1 \times \mathbb{C})$ is given by

$$s(z, v) = (z, i z v).$$

The action of t on E is described as

$$t(z, v) = (-z, t(z)v)$$

with $t(z) \in GL(2, \mathbb{R})$ where v is viewed as an element of \mathbb{R}^2 through the identification of \mathbb{C} with \mathbb{R} .² Since t is of order 2 and commutes with s, we have

$$t(-\overline{z})t(z) = 1$$
 and $t(\overline{z})i\overline{z} = -izt(z)$

where $i, z \in \mathbb{C}^* = GL(1, \mathbb{C})$ are viewed as elements of $GL(2, \mathbb{R})$ through the natural $GL(1,\mathbb{C}) \subset GL(2,\mathbb{R})$. These inclusion identities say that t(z) is determined for all $z \in S^1$ determined once it is for $z = \exp i\theta \in S^1$ with $0 \le \theta \le \pi/2$, and that t(i) is of order 2. Moreover det t(1)is negative since t(1) i = -it(1); so det t(i)is also negative because $t(z) \in GL(2, \mathbb{R})$ is a continuous function of z.

A continuous map $C: S^1 \to GL(2, \mathbb{R})$ defines a coordinate change of the bundle $E = S^1 \times \mathbb{C}$ by $(z, v) \to (z, C(z) v)$.

The commutativity with the action of s on E is equivalent to this identity :

(1)
$$C(\overline{z})i\overline{z} = i\overline{z}C(z)$$

Thus, to prove the claim is equivalent to finding the map C which satisfies (1) and

this identity

(2)
$$C(-\overline{z}) t(z) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} C(z)$$

The identities (1) and (2) say that C(z)is determined for all $z \in S^1$ if it is determined for $z \in S^1$ in the quarter circle as is so for t(z). Moreover (1) says that C(1) must be an element of $GL(1, \mathbb{C}) \subset GL(2, \mathbb{R})$ and (2) says that

$$c(i) t(i) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} c(i) .$$

As remarked above t(i) is of order 2 and has a negative determinant. It is elementary to check that there exists $C(i) \in GL(2, \mathbb{R})$ which satisfies the above identity and has a positive determinant. We take C(1) to be the identity matrix so that we can connect C(1) and c(i) in $GL(2, \mathbb{R})$ along the quarter circle. Then C(z) is defined for all $z \in S^1$ by (1) and (2). This gives an isomorphism between E and the plane bundle in the claim.

Case 3. The case where $\rho(G) \subset SO(2)$. Since the exact sequence (*) does not split, G is finite cyclic or SO(2)and $\rho: G \rightarrow SO(2)$ lifts to the double covering $\boldsymbol{\chi}: SO(2) \to SO(2) \ ,$ i.e. there is а $\hat{\rho}: G \to SO(2)$ homomorphism such that $\chi \rho = \rho$. The $\widehat{\rho}$ defines а real \widehat{V} . Consider the 2-dimensional G -module real G - line bundle

$$\gamma: S(\widehat{V}) \times \mathbb{Z}_2 \mathbb{R} \to S(\widehat{V}) / \mathbb{Z}_2 = S(V) ,$$

where $\mathbb{Z}_2 = \{\pm 1\}$ acts on $S(\widehat{V})$

and \mathbb{R} as scalar multiplication. The subgroup H acts trivially on the base S(V) and nontrivially on fibers, so $E \bigotimes_{\mathbb{R}} \gamma$ has the trivial H-action. Making the G-action on the tensor bundle effective, we may assume that the G-action on the base is effective. Therefore the tensor bundle decomposes into Whitney sum of real G-line bundles, hence so is E because $\gamma \bigotimes_{\mathbb{R}} \gamma$ is trivial.

. Acknowledgements

I would like to thank Mikiya Masuda for helpful conversation. This study was financially supported by a central research fund from Pai Chai University in 1998.

. References

- Cho, S. H., S. S. Kim, M. Masuda, and D. Y. Suh. Classification of equivariant vector bundles over a circle, preprint.
- Cho, J. H. and D. Y. Suh. 1997. Algebraic realization problems for low dimensional *G* manifolds, *Top ology App l.*, 78: 269-283.
- Kim. S. S. 1994. Z₂ -vector bundles over a circle, commun. Korean Math. 9(4): 927-931.
- Kim. S. S. and M. Masuda, 1994. Topological characterization of non-singular real algebraic G-surfaces, Topology and its applications. 57: 31-39.

14