Equivariant Real Vector Bundles over a Circle

Sung Sook Kim
Division of Natural Science, Pai Chai University

원위에서의 Equivariant Real Vector Bundles
김 성 숙
배재대학교 자연과학부

Abstract

Let G be a compact Lie group and let $\rho: G \rightarrow O(2)$ be a homomorphism. Denote by V the G-module associated with ρ and by $S(V)$ the unit circle of V. In this paper, we show that if G is abelian, then a real G-vector bundle over $S(V)$ is isomorphic to Whitney sum of real G-line or G-plane bundles.

군 G 가 compact Lie군이며 $\rho: G \rightarrow O(2)$ 가 homomorphism일 때 군 G 가 가환군이면 원위 에서 실 G-vector bundle은 실 G-line bundle들의 Whitney 합이거나 G-plane bundle들의 Whitney 합과 isomorphic 하다는 것을 보였다.

Key words : real G-vector bundle, equivariant vector bundle, G-plane bundle, Whitney sum.

I. Decomposition

Let G be a compact Lie group and let ρ $: G \rightarrow O(2)$ be a homomorphism. If G is abelian, $\rho(G)$ is an abelian subgroup of $O(2)$; so it is contained in $S O(2)$ or isomorphic to D_{1} or D_{2}, where D_{n} denotes the dihedral subgroup of $O(2)$ generated by the reflection matrix with respect to the x - axis and the rotation matrix of angle $2 \pi / n$.

When $\rho(G)$ is not contained in $S O(2)$, we may assume that $\rho(G)=D_{n} \quad$ (or $O(2)$). Denote by V the G-module associated with ρ and by $S(V)$ the unit circle of V. Note that effectiveness of the G-action is equivalent to the injectivity of ρ.

Proposition A. (Kim, 1993). A real G -vector bundle over $S(V)$ is isomorphic to Whitney sum of real G-line bundles if the G-action on $S(V)$ is effective.

The effectiveness assumption cannot be dropped in the proposition above but we obtain the following result.
Proposition B. If G is abelian, then a real G-vector bundle over $S(V)$ is isomorphic to Whitney sum of real G-line or G-plane bundles.

II. Proof of Proposition B

Since the real G-line bundles are classified by (Kim and Masuda, 1994), we classify real G-plane bundles over $S(V)$ when G is abelian.

Let $E \rightarrow S(V)$ be a real G-plane bundle. Since the action of $H=$ ker ρ on $S(V)$ is trivial, the fibers of E define a real 2-dimensional H-module F. If F is irreducible, then the action of H induces a complex structure so that E becomes a complex G-line bundle, which is analyzed in (Cho et al.,). So we may assume that F is not irreducible. If F is the direct sum of non-isomorphic real 1 -dimensional H modules, then E decomposes into Whitney sum of real G-line bundles accordingly. Therefore we may assume that F is the direct sum of a same 1 -dimensional H -module χ. Moreover we may assume that the G-action on E is effective. If χ is the trivial H-module, then H must be the trivial group by the effectiveness of the G -action on E; so the G-action on $S(V)$ is effective. It follows from Proposition A that E decomposes into Whitney sum of real G-line bundles. Thus we may assume that χ is the nontrivial H-module and H is of order 2 . We have a short exact sequence

$$
(*) \quad 1 \rightarrow H \rightarrow G \xrightarrow{\rho} \rho(G) \rightarrow 1
$$

If this exact sequence splits, then χ extended to a G-module $\tilde{\chi}$. A real G-line bundle $E \bigotimes_{\mathbb{R}} \tilde{\chi}$ has the trivial H-action. Making the G-action on the bundle effective, we may reduce to the case where the G -action on the base $S(V)$ is effective. It follows again from Proposition A that E decomposes into Whitney sum of real G-line bundles. Thus we may assume that the exact sequence (${ }^{*}$) does not split in the sequel.

We consider three cases.
Case 1. The case where $\rho(G)=D_{1}$. Since the exact sequence (*) dose not split, G must be isomorphic to \mathbb{Z}_{4}. This case is studied in (Cho and Suh, 1997) in detail but we shall give a different argument for later's convenience. Since the G-action on E is effective, G acts on the fibers E_{p} and E_{q} as rotation; so their exterior products $\wedge^{2} E_{p}$ and $\wedge^{2} E_{q} \quad$ are both trivial G-modules. This implies that a real G-line bundle $\wedge^{2} E$ is trivial with fiber \mathbb{R}. Therefore one can choose a G-invariant nondegenerate 2 -form. This together with a G-invariant metric on E defines a G-invariant complex structure on E. Therefore E is realification of a complex G-line bundle. So there are two types of G-plane bundles by (Cho et al.,).
case 2. The case where $\rho(G)=D_{2}$. In this case G must be isomorphic to $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$. Let s and t denote element of G which are respectively of order 4 and 2 and generate G. There are four elements of order 4 , those are s, s^{3}, st and $s^{3} t$.

If all of them map to $-1 \in D_{2}$ by ρ, then $1, s^{2}, t$ and $s^{2} t$ are in $H=\operatorname{ker} \rho$ which contradicts that H is of order 2. Therefore we may assume that $\rho(s)$ is the reflection with respect to the x-axis. Then $\rho(t)$ is -1 or the reflection with the y-axis, but we may assume that $\rho(t)$ is the reflection with respect to the y-axis.

As observed in Case $1 \wedge^{2} E$ is trivial with fiber \mathbb{R} as $\langle s\rangle$-line bundle where $\langle s\rangle$ denotes the order 4 subgroup of G generate by s. If t preserves an orientation of E, then t acts trivially on fibers of $\wedge^{2} E \quad$; hence $\wedge^{2} E$ is trivial with fiber \mathbb{R} as G-line bundle. Then as in case 1 one can choose a nondegenerate G-invariant 2-form on E so that E becomes a complex G-line bundle which is trivial by Theorem 2.2.

In the sequel we may assume that t reverses an orientation of E.

Claim. We identify \mathbb{C} with \mathbb{R}^{2}. If t reverses an orientation of E, then E is isomorphic to a real G-plane bundle $S^{1} \times \mathbb{C} \rightarrow S^{1} \quad$ with $\quad G$-action given by

$$
s(z, v)=(\bar{z}, i \bar{z} v), \quad t(z, v)=(-\bar{z}, \bar{v})
$$

Proof. As remarked above E admits a complex structure preserved by the action of s. Suppose that the $\langle s\rangle$-complex line bundle structure on E is trivial. Then the orientations on E induced by the action of s at the $\langle s\rangle$-fixed points agree. Since t commutes with s, this means that t preserves the orientation, which is a contradiction. Therefore the $\langle s\rangle$-complex
line bundle structure on E is nontrivial. It follows from theorem 2.2 that we may assume that the action of s on $E\left(=S^{1} \times \mathbb{C}\right)$ is given by

$$
s(z, v)=(\bar{z}, i \bar{z} v)
$$

The action of t on E is described as

$$
t(z, v)=(-\bar{z}, t(z) v)
$$

with $t(z) \in G L(2, \mathbb{R}) \quad$ where $\quad v$ is viewed as an element of \mathbb{R}^{2} through the identification of \mathbb{C} with $\mathbb{R} .^{2}$ Since t is of order 2 and commutes with s, we have

$$
t(-\bar{z}) t(z)=1 \quad \text { and } \quad t(\bar{z}) i \bar{z}=-i z t(z)
$$

where $i, z \in \mathbb{C}^{*}=G L(1, \mathbb{C})$ are viewed as elements of $G L(2, \mathbb{R})$ through the natural inclusion $\quad G L(1, \mathbb{C}) \subset G L(2, \mathbb{R})$. These identities say that $t(z)$ is determined for all $z \in S^{1} \quad$ once it is determined for $z=\exp i \theta \in S^{1} \quad$ with $\quad 0 \leq \theta \leq \pi / 2$, and that $t(i)$ is of order 2 . Moreover $\operatorname{det} t(1)$ is negative since $t(1) i=-i t(1) ;$ so det $t(i)$ is also negative because $t(z) \in G L(2, \mathbb{R}) \quad$ is a continuous function of z.

A continuous map $C: S^{1} \rightarrow G L(2, \mathbb{R})$ defines a coordinate change of the bundle $E=S^{1} \times \mathbb{C}$ by $(z, v) \rightarrow(z, C(z) v)$.
The commutativity with the action of s on E is equivalent to this identity :

$$
\begin{equation*}
C(\bar{z}) i \bar{z}=i \bar{z} C(z) \tag{1}
\end{equation*}
$$

Thus, to prove the claim is equivalent to finding the map C which satisfies (1) and
this identity
(2) $C(-\bar{z}) t(z)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) C(z)$

The identities (1) and (2) say that $C(z)$ is determined for all $z \in S^{1}$ if it is determined for $z \in S^{1}$ in the quarter circle as is so for $t(z)$. Moreover (1) says that $C(1)$ must be an element of $G L(1, \mathbb{C}) \subset G L(2, \mathbb{R}) \quad$ and (2) says that

$$
c(i) t(i)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) c(i) .
$$

As remarked above $t(i)$ is of order 2 and has a negative determinant. It is elementary to check that there exists $C(i) \in G L(2, \mathbb{R})$ which satisfies the above identity and has a positive determinant. We take $C(1)$ to be the identity matrix so that we can connect $C(1)$ and $c(i)$ in $G L(2, \mathbb{R})$ along the quarter circle. Then $C(z)$ is defined for all $z \in S^{1}$ by (1) and (2). This gives an isomorphism between E and the plane bundle in the claim.

Case 3. The case where $\rho(G) \subset S O(2)$. Since the exact sequence $\left({ }^{*}\right)$ does not split, G is finite cyclic or $S O(2)$ and $\rho: G \rightarrow S O(2) \quad$ lifts to the double covering $x: S O(2) \rightarrow S O(2), \quad$ i.e. there is a homomorphism $\quad \hat{\rho}: G \rightarrow S O(2) \quad$ such that $x \widehat{\rho}=\rho$. The $\hat{\rho}$ defines a real 2-dimensional G-module \widehat{V}. Consider the real G-line bundle

$$
\begin{aligned}
& \gamma: S(\widehat{V}) \times \mathbb{Z}_{2} \mathbb{R} \rightarrow S(\widehat{V}) / \mathbb{Z}_{2}=S(V), \\
& \text { where } \quad \mathbb{Z}_{2}=\{ \pm 1\} \quad \text { acts } \quad \text { on } \quad S(\widehat{V})
\end{aligned}
$$

and \mathbb{R} as scalar multiplication. The subgroup H acts trivially on the base $S(V)$ and nontrivially on fibers, so $E \bigotimes_{\mathbb{R}} \gamma$ has the trivial H-action. Making the G-action on the tensor bundle effective, we may assume that the G-action on the base is effective. Therefore the tensor bundle decomposes into Whitney sum of real G-line bundles, hence so is E because $\gamma \bigotimes_{\mathbb{R}} \gamma$ is trivial.

III. Acknowledgements

I would like to thank Mikiya Masuda for helpful conversation. This study was financially supported by a central research fund from Pai Chai University in 1998.

IV. References

Cho, S. H., S. S. Kim, M. Masuda, and D. Y. Suh. Classification of equivariant vector bundles over a circle, preprint.
Cho, J. H. and D. Y. Suh. 1997. Algebraic realization problems for low dimensional G manifolds, Topology Appl., 78: 269-283.
Kim. S. S. 1994. \mathbb{Z}_{2}-vector bundles over a circle, commun. Korean Math. 9(4): 927-931.
Kim. S. S. and M. Masuda, 1994. Topological characterization of non-singular real algebraic G-surfaces, Topology and its applications. 57: 31-39.

