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A NEW METRIC ON SPACE OF FUZZY SETS

Sang Yeol Joo and Yun Kyong Kim

Abstract. In this paper, we introduce a new metric on space

F(Rp) of fuzzy sets and prove that F(Rp) is separable and com-

plete.

1. Introduction

The Skorokhod metric on the space D[0, 1] of functions from [0, 1]
into the real line R which are right-continuous and have left limits
was introduced to study limits theorems for stochastic processes with
jumps (see Skorokhod [11]). It turned out that the Skorokhod metric
plays a key role for the convergence of probability measures on D[0, 1]
( see Billingsley [1], Jacod and Shirayaev [6] ). Goetschel and Voxman
[3] obtained the representation theorem of fuzzy numbers in R which
shows similarity between the space D[0, 1] and the space F (R) of fuzzy
numbers in R. Using this representation theorem, Joo and Kim [7]
introduced a metric on F (R) similar to the Skorokhod metric on D[0, 1]
and proved that F (R) is separable and complete in the metric. Thus
it seems natural that we ask whether similar results to those of above
mentioned works can also be obtained for the space of fuzzy sets in
more general setting.

The purpose of this paper is to answer this question. Section 2 is
devoted to describe some basic concepts of fuzzy sets. In section 3, we
introduce a new metric on the space F(Rp) of fuzzy sets in Rp and
prove that F(Rp) is separable and complete in this metric.

2. Preliminaries

In this section, we describe some preliminary results of fuzzy sets.
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Let K(Rp) denote the family of non-empty compact subsets of the Eu-
clidean space Rp. Then the space K(Rp) is metrizable by the Hausdorff
metric defined by

dH(A,B) = max{sup
a∈A

inf
b∈B

|a− b|, sup
b∈B

inf
a∈A

|a− b|}

where |.| denotes the Euclidean norm. It is well-known that K(Rp) is
complete and separable with respect to the Hausdorff metric dH ( See
Debreu [4] ).

Lemma 2.1. Assume that {An} is a increasing (resp. decreasing)
sequence in K(Rp). If there is a subsequence of {An} converging to
A ∈ K(Rp) with respect to the Hausdorff metric dH , then

lim
n→∞

dH(An, A) = 0.

In addition,

A =
⋂
n≥1

⋃
k≥n

Ak

where B̄ denotes the closure of B in Rp.

Proof. See Lemma 2.2 of Kaleva [8]. �

Let F(Rp) denote the family of all fuzzy sets ũ : Rp → [0, 1] with
the following properties;

(1) ũ is normal, i.e., there exists x ∈ Rp such that ũ(x) = 1;
(2) ũ is upper semicontinuous;
(3) supp ũ = {x ∈ Rp : ũ(x) > 0} is compact.

For a fuzzy set ũ in Rp, if we define

Lαũ =
{ {x : ũ(x) ≥ α}, if 0 < α ≤ 1

supp ũ, if α = 0.

then, it follows immediately that ũ ∈ F(Rp) if and only if Lαũ ∈ K(Rp)
for each α ∈ [0, 1].
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Lemma 2.2. For ũ ∈ F(Rp), we define

f : [0, 1] −→ (K(Rp), dH), f(α) = Lαũ.

Then the followings hold;

(1) f is left continuous on (0, 1],
(2) f has right-limits on [0, 1)and f is right-continuous at 0.

Proof. (1). Let α ∈ (0, 1] and {αn} be an increasing sequence in
[0, 1] such that lim

n→∞
αn = α. Then {Lαn

ũ} is a decreasing sequence in

K(Rp) with Lαn ũ ⊂ L0ũ for all n. Since L0ũ is compact, the sequence
{Lαn ũ} has a convergent subsequence in (K(Rp), dH). By Lemma 2.1,
it converges to the limit⋂

n≥1

⋃
k≥n

Lαk
ũ =

⋂
n≥1

Lαn ũ = Lαũ

Thus, f is left-continuous at α.
(2). Let α ∈ [0, 1) and {αn} be a decreasing sequence in [0, 1] with
αn > α such that lim

n→∞
αn = α. By the similar arguments as in (1),

we have that {Lαn
ũ} converges to the limit

⋂
n≥1

⋃
k≥n

Lαk
ũ =

⋃
β>α

Lβ ũ

Hence, f has right-limit at α. The right-continuity of f at 0 follows
immediately. �

We denote
⋃

β>α

Lβ ũ by Lα+ ũ. Now we define, for J ⊂ [0, 1],

(2.1) wũ(J) = sup
α1,α2∈J

dH(Lα1 ũ, Lα2 ũ)

then it follows that for 0 ≤ α < β ≤ 1,

wũ(α, β) = wũ(α, β] = dH(Lα+ ũ, Lβũ),
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and
wũ[α, β) = wũ[α, β] = dH(Lαũ, Lβ ũ).

Also,

lim
β→α+

wũ(α, β] = 0,

lim
β→α+

wũ[α, β] = dH(Lαũ, Lα+ ũ),

and
lim

γ→α−
wũ(γ, α] = lim

γ→α−
wũ[γ, α] = 0.

Thus, if we define

(2.2) wũ(α) = dH(Lαũ, Lα+ ũ),

then
wũ[α, β) ≤ wũ(α) + wũ(α, β),

and the function f defined as in Lemma 2.2 is continuous at α if and
only if wũ(α) = 0.

Now, we define the metric d∞ on F(Rp) by

(2.3) d∞(ũ, ṽ) = sup
0≤α≤1

dH(Lαũ, Lαṽ)

Then it is well-known that F(Rp) is complete but not separable with
respect to d∞(see Klement, Puri and Ralescu [10]).

3. Main Results

In this section, we introduce a new metric on F(Rp) and prove
that F(Rp) is a Polish space. To this end, we will proceed by similar
arguments in Joo and Kim [7]. First, let T denote the class of strictly
increasing, continuous mapping of [0, 1] onto itself. For ũ, ṽ ∈ F(Rp),
we define

ds(ũ, ṽ) = inf{ε :there exists a t in T such that

sup
0≤α≤1

|t(α)− α| ≤ ε and d∞(ũ, t(ṽ)) ≤ ε}(3.1)
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where d∞ is the metric on F(Rp) defined by (2.3). Then it follows
immediately that ds is a metric on F(Rp) and ds(ũ, ṽ). The topology
generated by the metric ds will be called the Skorokhod topology. Then
it follows that a sequence {ũn} in F(Rp) converges to a limit ũ in the
metric ds if and only if there exists a sequence of functions {tn} in T
such that

lim
n→∞

tn(α) = α uniformly inα,

and
lim

n→∞
d∞(tn(ũn), ũ) = 0.

If d∞(ũn, ũ) → 0, then ds(ũn, ũ) → 0. But, the converse is not true
( For counter-example, see Joo and Kim [7] ).

Lemma 3.1. For each ũ ∈ F(Rp) and ε > 0, there exist a partition
0 = α0 < α1 < ... < αr = 1 of [0, 1] such that

(3.2) wũ(αi−1, αi) < ε, i = 1, 2... , r.

Proof. Let τ be the supremum of those α in [0, 1] for which [0, α] can
be decomposed into finitely many subintervals satisfying (3.2). Since
the function f(α) = Lαũ is right-continuous at 0, we have τ > 0.
Also, since f(α) = Lαũ is left-continuous at τ , [0, τ ] can itself be so
decomposed. Now suppose that τ < 1. Then since f(α) = Lαũ has
right-limit at τ , there exists δ ∈ (0, 1− τ) such that

wũ(τ, τ + δ) < ε

which is impossible because [0, τ + δ] can also be decomposed into
finitely many subintervals satisfying (3.2) in this case. �

For ũ ∈ F(Rp) and 0 < δ < 1 , we define

(3.3) w′ũ(δ) = inf max
1≤i≤r

wũ(αi−1, αi)

where the infimum is taken over all partitions 0 = α0 < α1 < ... < αr

of [0, 1] satisfying αi−αi−1 > δ for all i. Then, Lemma 3.1 is equivalent
to the assertion that

lim
δ→0

w′ũ(δ) = 0

for each ũ ∈ F(Rp).
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Theorem 3.2. (F(Rp), ds) is separable.

Proof. Let F0(Rp) be the family of ṽ ∈ F(Rp) which for some posi-
tive integer k, there exist S1 ⊃ S2 ⊃ · · · ⊃ Sk which are finite unions of
p-dimensional cubes of the form

∏p
j=1[aj , bj ] with rational points aj , bj

such that

ṽ(x) =
k−1∑
i=1

i

k
ISi\Si+1(x) + ISk

(x)

where IA denotes the indicator function of A.
Then F0(Rp) is exactly same as the family of ṽ ∈ F(Rp) which

Lαṽ is a finite union of p-dimensional cube with rational vertices and
identical over [0, 1

k ] and ( i−1
k , i

k ], 2 ≤ i ≤ k, for some k.
Now it is enough to prove that F0(Rp) is dense with respect to ds.

Let ũ ∈ F(Rp) and ε > 0 be arbitrary fixed. By lemma 3.1, we can
take a partition 0 = α0 < α1 < ... < αr = 1 of [0, 1] satisfying (3.2).
And then we choose a positive integer m so that

1
m

< ε and
1
m

< (αi − αi−1) for all i

Also now we take a finite union of p-dimensional cubes of the form∏p
j=1[aj , bj ] with rational points aj , bj such that

S1 ⊃ S2 ⊃ · · · ⊃ Sk

and
Lαi

ũ ⊂ Si ⊂ N(Lαi
ũ, ε)

where N(A, ε) = {y ∈ Rp : inf
a∈A

|y − a| < ε}.

Let us define mi = min {j|αi ≤ j
m} and take t ∈ T to mi

m at the
points αi and be linear in between. Then

sup
0≤α≤1

|t(α)− α| ≤ 1
m

< ε

Now, if we define

ṽ(x) =
r−1∑
i=1

mi

m
ISi\Si+1(x) + ISr (x),
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then ṽ ∈ F0(Rp). Since Lαi
ũ ⊂ Lαũ ⊂ Lα+

i−1
ũ ⊂ Si for

αi−1 < α ≤ αi, we have

sup
αi−1<α≤αi

dH(Lαũ, Lαt−1(ṽ)) = sup
αi−1<α≤αi

dH(Lαũ, Lt(α)ṽ)

= sup
αi−1<α≤αi

dH(Lαũ, Si) ≤ ε,

which implies d∞(ũ, t−1(ṽ)) ≤ ε. Therefore we conclude ds(ũ, ṽ) ≤ ε.�

Theorem 3.3. F(Rp) is not complete with respect to the metric
ds.

Proof. Let us define

ũn =


1, x = θ
1
n , x ∈ [0, 1]p, x 6= θ

0, elsewhere,

where θ is the zero vector of Rp. If we denote, for distinct positive
integers m,n, tm,n is a member of T such that tm,n( 1

n ) = 1
m and linear

in elsewhere, then

sup
0≤α≤1

|tm,n(α)− α| = | 1
n
− 1

m
|,

and
d∞(tm,n(ũn), ũm) = 0,

which implies ds(ũn, ũm) ≤ | 1n −
1
m |.

On the other hand, d∞(t(ũn), ũm) = 0 or 1 for each t ∈ T. Thus, if
d∞(t(ũn), ũm) = 0, then t( 1

n ) = 1
m which implies

sup
0≤α≤1

|t(α)− α| ≥ | 1
n
− 1

m
|

Hence ds(ũn, ũm) = | 1n − 1
m | and {ũn} is a Cauchy sequence in the

metric ds.
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Now, we prove that {ũn} is not convergent in the metric ds. To this
end, it suffices to show that if t ∈ T and ũ ∈ F(Rp), then there exists
ε0 > 0 such that d∞(t(ũ), ũn) ≥ ε0 for infinitely many n . Suppose
that this assertion is not true. Then

sup
1
n <α≤1

‖Lt−1(α)ũ‖ = sup
1
n <α≤1

dH(Lt−1(α)ũ, Lαũn)

≤ d∞(t(ũ), ũn) → 0 as n →∞.

This means that
sup

0<α≤1
‖Lt−1(α)ũ‖ = 0,

that is,
Lαũ = {θ} for eachα > 0.

Therefore,

ũ(x) =
{

1, if x = θ

0, otherwise,
which yields a contradiction since then d∞(t(ũ), ũn) = 1. �

Now we shall introduce another metric d∗s on F(Rp) which is equiv-
alent to ds but F(Rp) is complete with respect to d∗s. First, for t ∈ T ,
put

|‖t‖| = sup
α6=β

| log
t(β)− t(α)

β − α
|

and for ũ, ṽ ∈ F(Rp), we define

d∗s(ũ, ṽ) = inf{ε > 0 : there exists a t ∈ T with |‖t‖| ≤ ε

such that d∞(ũ, t(ṽ)) ≤ ε}.(3.4)

Then by a very similar manner in Joo and Kim [7], we can obtain the
following results, which are listed without proofs.

Theorem 3.4. d∗s is a metric on F(Rp).

Lemma 3.5. If d∗s(ũ, ṽ) < 1
4 , then ds(ũ, ṽ) ≤ 2d∗s(ũ, ṽ).

Lemma 3.6. If 0 < δ < 1
4 and ds(ũ, ṽ) < δ2, then

d∗s(ũ, ṽ) ≤ 4δ + w′ũ(δ).

Theorem 3.7. The metrics ds and ds
∗ on F(RP ) are equivalent.

Theorem 3.8. F(RP ) is complete with respect to the metric d∗s.
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