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ON THE CURIE-WEISS MODEL
WITH A NEW HAMILTONIAN

SANG Ho LEE

ABSTRACT. In this paper we obtain similar limit theorems of the
Generalized Curie - Weiss model for a new class Hamiltonian. We
expressed the saddlepoint approximation by large deviation rate
and then obtain the limit theorems.

1. Introduction

A ferromagnetic crystal consists of a large number of sites. The
amount of magnetic spin present at site ¢ will be denoted by X Z-(n),z' =
1,2,--- ,n, where n is a positive integer. The magnetic spin present at
any site to some dependency among the random variables X Z.(”) ’s. The
joint distribution, at a fixed temperature T" > 0, of the spin random
variables (X{n), e ,Xg")), is given by

(11) dQ(ﬂfl, . 7xn) — Z;lexp{ B Hn(xl,j'—‘- . 7(1311) } HdP(iL‘Z),
=1

where P is a probability measure on R. The function H,(z1, - ,z,)
is known as the Hamiltonian and it represents the energy of the crys-
tal at the configuration (z1,---,z,) and z, is a normalizing con-
stant which is also known as the partition function. Simon and Grif-
fiths(1973) has a particular model in which the Hamiltonian is taken
as Hy(z1, - ,2n) = —(x1 + -+ + 1,)?/2n and P is replaced by Pr
in (1.1) where Pr(z) = P(z/T). This is known as the Curie - Weiss
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model. And they obtained the asymptotic distribution of the total
magnetism S, = an) + e+ Xy({n) for this model when P is a sym-
metric Bernoulli measure, i.e., P({1}) = P({—1}) = 1/2. The asymp-
totic distribution of the partial sum of spin random variables in the
Curie-Weiss model was obtained by Simon and Grifiths(1973). Ellis
and Newman(1978a, 1978b) extended the result of Simon and Griffiths
to a large class of probability measures. Jeon(1979) gave a statis-
tically motivated proof of this result and used the technique of the
proof to obtain similar limit theorems for a wider class of Hamiltoni-
ans, H,(x1, -+ ,x,) = —log ¢"(s,/n), where ¢ is a moment generat-
ing function of a random variable Y. He also removed the assump-
tion that P is spherically symmetric. The results of Richter(1957) on
sums of independent, identically distributed random variables are gen-
eralized to arbitrary sequences of random variables by Chaganty and
Sethuraman(1985). Using the local limit theorem of Chaganty and
Sethuraman(1985) they obtain similar limit theorems for a wider class
of Hamiltonians, which are functions of moment generating functions
of suitable random variables. Utilizing the results of Daniels (1954)
that is the saddlepoint approximation of independent, identically dis-
tributed random variables, Lee, Kim and Joen(1993) obtain the dual
limit theorems of the generalized Curie - Weiss model.

In this paper, we obtain the similar limit theorems for the gen-
eralized Curie - Weiss model which were studied in Lee, Jeon and
Kim(1993). For this, we use the results of Jenson(1995) which gener-
alized saddlepoint method of arbitrary sequence of random variables
and obtain similar results for wider class of Hamiltonians.

2. Saddlepoint approximation

For a random variable X € R defined on a probability space
(Q, A, P) the moment generating function pp(6) for § € R is defined
as

pp(f) = Eexp{X} = /exp{@X}P(dw).

The domain of the transformis ©p = {# € R : ¢p(0) < co}. The expo-
nential family generated by X and P consists of probability measures
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Py, 0 € ©p, given by

dPg (w)

o = ' (0) exp{6X (w)}.

The cumulant generating function(c.g.f.) is ¥p(0) = log ¢ p(0). More
generally, the moment generating function under Py is Fyexp{{X} =
op(E+0)/op(0), up(0) = EgX and 0%(0) = Varg(X) are the mean
and variance-covariance matrix of X under Py, respectively. That is,

up(0) = EgX = /XdPg - /X%dP
_ / X5 (6) exp{0X }dP = Wg 0(9)
e 2 >p(6)
op(0) =Varg(X) = 52
Denote Lp(x) the Legendre-Fenchel transform of ¢p(0) by
o) Lp(z) = sup Lp(0: ) = sup {6z — Yp(0)},

0cO, 0cO,

that is, the large deviation rate of ¥p(#) since ¥ p(6) is a cumulant
generating function. The exponential family is called regular if Op is
open, that is, Op = int®p. The {p(f : x) attains its supremum at a
point f(z), that is, Lp(z) = £p(A(z); x) if and only if 2 € intC, where C
is the closed convex hull of the support of X. The point é(x), x € intC,
is unique and the solution of up(8) = x if x € {up(d) : 6 € Op} C
intC'. When the exponential family is regular we have in fact that
{pp(0) : 0 € Op} = intC, that is, up(f#) = x has a solution 6 € ©p for
any x € intC'. This is the saddlepoint. We consider only those values
of z for which there exists § = 0(x) € int®p with pup(0) = .

Let {ap>1: o € Z*} be a sequence of positive integers such that
ay, is strictly increasing as n — oo. Let Y, € R, o, € ZT, be
a non-lattice random variable with the moment generating function

¢y, (0) = Eexp{0Y,, } defined for

0cOy, ={0cR:py, (0) <o}
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Furthermore, we let ¢y, (0) = é log ¢y, (0), py, (0) = i%@byan (9)
and 02 () = L4 gy (6). And let {ma, : an > 1} be a se-
quence of real numbers in R such that m,, converges to m, as n — oo,
where mq, = ¥y (0a,), 00, € Oy, and m = 9y ((a,) such that

~

Ca, € MOy, for all a;, > 1. The saddlepoint 6 = 6(z) will be de-
termined by py, (0) = x. Let Y, = Y, /a,. Then the saddlepoint
approximation to the density f,(x) of Y;, =Y, /a, at z is

ol/?
fn(x) = \/%O'an (9)
% exp{—an(6z — by, (O))}[1+ (1)

1/2

V270a, ()

x exp{—an Ly, (x))}1+o(1)] as a, — 00.

(2.2)

REMARK 2.1. In the iid. cases, Y,, = Y] +---+ Y/ , we obtain
oy, (0) = (¢(0))*", with p(0) = Eexp{0Y{}. And also we see that
Ov,, ={0 e R: oy, (0) <oo} ={0 € R:p(0) <oo}, py,, (0) =
p(0) and a%an (0) = o2(0).

REMARK 2.2. Under the some conditions there exists a subset ©¢ of
Oy, for all a,, saddlepoint approximation holds uniformly for 6 € O
and has relative error O(a;,?). See Jenson(1995).

3. Preliminaries

For a probability measure () on R with the moment generating func-
tion pq(0) = [, exp{tz}Q(dx) for 6 € B¢, let Mq be a class of prob-
ability measure P such that for f@Q v (0)P(df) < oo, where P is a
probability measure on R.

Let Xi(n), 1 = 1,---,n, denote a triangular array of random vari-
ables with the joint distribution given by

(3.1) dQu(z1,-- ,2,) =2, " exp{vg[(z1 + -+ x,)/n]} HdP(xi),
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where z; € R, ¢ =1,--- ,n, 2, is a normalized constant and P € M.
This model is called the generalized Curie- Weiss Model which is a direct
generalization of the Curie-Weiss model,

(3.2) dQn(wy, - ,x,) = 2z, "exp{|zy + -+ +2,]*/2n]} Hdp(x,)

We now present the theorem of Sethuraman(1961) which was crucially
used to obtain the marginal limiting distribution in the proof of main
theorem.

THEOREM 3.1. (Sethuraman;1961) Let \,, be a sequence of proba-
bility measures on U x V', where U and V' are topological spaces. Let
in, be the marginal probability measure of \,, on U and v, (u,-) be a
conditional probability measure on V. Suppose that p, converges to
a probability measure p for every measurable set in U and for almost
all u with respect to p, v,(u,-) converges Weakly to v(u,-). Then A,
converges weakly to A, where A\(A x B) = [, v 4 v(u, B)du(u), for every
measurable rectangle set A x B.

4. Main Results

Let {Y,, : m > 1} be a fixed sequence of random variables in R
having a saddlepoint approximation (2.2) in section 2. and E(Y,,, ) =
me, and Var(Y,,) = ayo? for all a,, > 1. Let Q be a probability
measure on R with moment generating function ¢g(¢) and cumulant
generating function g (#). For given a random variable Y, and a
probability measure P € Mg, define

Gy, (u) = Ly, (u)—1p(u) for all w € Op,

where Ly, (u) is the large deviation rate of the random variable Y,
and ©¥p(+) is the cumulant generating function of the probability mea-
sure P.

DEFINITION 4.1. A real number m is said to be a global minimum
for Gy, (-)if
Gy,

an

(u) > Gy, (m) for all u.
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DEFINITION 4.2. A global minimum m of Gy,  is said to be of type
k if

Gy, (u+m)— Gy, (m)=G® (u)+o(|u|*) as u| — 0,
where Gg,ik) = coruf and cop = Ggfak) for u € R.

Let X{a”), e ,Xgi"),an € ZT, be an array of random variables
with the joint distribution

(41)  dQa, (21, ,Za,) = 2, explantby,  (sa, /an)] [ dP(z;),
j=1
where z,, is a normalizing constant, and P € My, . Here, each x; €
R,j=1,2, - and 84, = 71+ +2q,. Let Sq, = X\ 4.4 x50,
The model (4.1) is the extended model of Chaganty and Sethura-
man(1985) and has the larger than Hamiltonian in the model.

DEFINITION 4.3. Let M™* be the class of probability measures P
defined on R satisfying the following two conditions

(4.2) / exp{iy, (u)}dP(u) < oo
R
and
(4.3)
There exists p,l > 0 such that / exp{—IGy, (u)}du=O(ab).
R

Note that @, is well defined because

- /.../exp{oznwyan (San/an)}f[dp(iﬂj)
/ /eXP{idJYan () HdP z5)

= H exp{vy, (z;)} < oo.

J=1
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THEOREM 4.4. Let P € M* and Xfa”),--- X a, € ZF be
an array of random variables with the joint distribution (4.1). Let
Mq, — M as n — oo. Assume that the following conditions hold,

(C1) Gy, has a global minimum of type k at m,,, for all ay,.

(C2) Ggfak)(man) = Cok,a, — C2k &S M — OO.

(C3) There exists € > 0 such that Gg,zf)(u) > e|lu|**, where

G(%)(u) = copu?F for u € R. Then,

(4.4)
Sa,, — nba, 4 { 2 expl—cory®F /[ (m)]?* (2k)Y) if k> 2
o~/ N(0, ¢p(m)[yp(m) — co]/c2) it k=1
where zj, is a normalizing constant, Y¥p(me, ) = ba,, c2 =

Ggfa) (m) and cop, = Ggfak)(m) > 0.

The proof of this theorem follows from a sequences of following lem-
mas. Let

hn(u) = (27) 20y, (Ca, )y '/
(4.5) X exp{an [V p(Ma, + a;l/%u) - GYan (Ma, )]}

X fr (M, 4+ o /2F0)
and
(4.6) h(u) = exp{—G®") (u)} for all u,

where ¥ (Ca,,) = M, Ca,, € Oy, for all o, > 1.

LEMMA 4.5. Let Ggfak)(man) = Cok,a,- If Gy, has a global min-
imum of type k at m,, and cog,, — C2r. Then h,(u) — h(u), as
n — o0o.

Proof. Fix u € R. By the saddlepoint approximation (2.2) we have
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hp(u) = (27r)1/20'yan (Ca, Y /2
x exp{an[tp(ma, + a,?u) — Gy, (ma,)]}
X a}L/Q(QW)_l/QJ;;n (Ca,)
x exp{—an Ly, (Ma, + o V2R ML + 0(1)]
= exp{—an[Gy,, (Ma, +a,"?u) = Gy, (ma,)]}1 +o(1)]
= exp{—an[a;, G (a1 u) + o(ay, |u*")]}1 + o(1)]
= exp{~G (u)}[1 + o(1)].

The lemma is now immediate taking limits as n — oo. O

LEMMA 4.6. Let 0 < 0 < 1/2k. Suppose that Gy, ’s have a unique
global minimum of type k at a point m,,, then there exists oy, such
that for all a,, < ap,,

Op [GYan (man + agl/Qku)_GYan (man)]

> G2 () /2 uniformly for |u| < a2,
Proof. By condition (C2), we can find ay, such that for o,, > any,,

|G§/2f)(U) — G (w)| > elu** /4 for all u € R.

Hence by condition (C3) there exists ay, such that

(4.7) G (1) > G (u) /2 + elu /4 for all 4y, > oy,
Since o, *|u|** goes to 0 uniformly for |u| < af and Gy,  has a global

minimum at the point m,, we can find ay, such that for all o, > ap,,
(48) au[Gy,, (ma, +ay'*u) = Gy, (ma,)] > GV (u) = elul* /4.

The lemma follows form (4.7) and (4.8) choosing Ny = max{ Ny, Na}.0J



On the Curie-Weiss model with a new Hamiltonian 309
LEMMA 4.7. Let 0 < § < 1/2k be fixed. Then

(4.9) /|u|gag B (u)du — / h(u)du —asn — oo.

Proof. Note that condition (C3) implies [ h(u)du < co. The proof
is completed using the dominated convergence theorem, Lemma 4.5
and Lemma 4.6. O

LEMMA 4.8. Let {Y,, : o, > 1} be a sequence of random variables
satisfying the condition of section 2. Then for all u € R,
(4.10) exp{anLy, (Mma, +u)}fu(Ma, +u) = O(ak/?), asn — .

Proof. By the definition, as n — oo,

|exp{an Ly, (Ma, +u)}fu(ma, +u)l

1/2
Ozn/

‘ (27?)1/203/% (9)

LEMMA 4.9. Let 0 < § < 1/2k be fixed and h,,(u) be as defined by
(4.5). Then

(1+o(1))]. O

(4.11) / hp(u)du — 0 asn — oo.
ul>a,

Proof. jFrom Lemma 4.8 and condition (C1) we obtain the result.
By (4.5) we have

/ R (w)du
|u|>ad
= (2m) 20y, (Ca,)ay '/
< [ explanlvnima, + oy )+ Gy, (ma, )
|ul>ad

X fu(Ma, + ay ' u)du

= () 0y, (Ca o
y / exp{—n[Gy,, (M, + a2 /?0) + Gy, (ma,)]
lu|>al

+anLy, (M, + a;l/zku)}fn(man + a;l/zku)du
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substituting v’ = oy

‘/|u|>a% "

< (2m) oy, , (Ga,)ay TR

x / e |oPl Oy, e 4 0) = G, (ma )T
u|>o
X |exp{anLyan (Mg, + ) frn(me, +u)|du
< O(ar+t+1/0)/2)
x  max exp{—(an —1)[Gy,, (Ma, +u) = Gy, (Ma,)]

|u|> —1/2k

« / exp{—(an — 1[Gy, (ma, +u) — Gy, (ma,)|du

u, we get

_ O(afl+(1+1/k)/2)
X max exp{—(an —)[Gy,  (Mma, +u) =Gy, (Mma,)]

|u|> —1/2k
The last inequality follows from Lemma 4.8. Thus we get from condi-
tion (4.3)
) / w)du| < O(a2P+1+1/k)/2)
\u|>a5

max exp{—(a, — D[Gy, (ma, +vy) — Gy,

‘u|> —1/2k n an

= O(aip+(1+1/k)/2) exp{—(an — )R, }

(ma,, )]}

and

R, = mln Gy, (Ma, +y) — Gy, (Mma,)]

u[>ad—1/2k
= mm{[GY (o, o-1/2k +ma,,) — GYan (Ma, )],

Gy, (—aq” 1/2'“+man)—GYan (ma,, )]}

_ G2k an 2k:(5 1/2k) o2k (6—1/2k)
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since My, is the unique global minimum of Gy, =~ and ca,q, > 0. Hence

)/ hn(u)du‘ < 0(aip+(1+1/k)/2)
lu|>af

_ o[ C2kom 2k(5—1/2k) 2k(6—1/2k)
X exp{ (o, — 1) [—(21@‘)! o + o(a;, )]}

which goes to 0 since 0 < § < 1/2k and the proof is complete. O

Now we proof the Theorem 4.4. We can express the joint distribution
Qa,, as follows;

dQa, (Tay, s Ta,) = Zo_ml eXp[O‘n@DYan (5, /tn)] H dP(xj)

j=1

=l [ exploa,ubtu) [ aPla).

Substituting y = my,, + ozy_bl/%u

Y

an” (xl’ o ’xan) = Zc:nlagl/gk / exp{san (man + 047;1/2]{:'11/)}
R

X fn(Me, + a;l/%u) H dP(x;)

j=1

= Zoe_j%_bl/% / exp{sa, (Ma, + a2 u) — anp(ma, +a; %)}
R
aTL

x exp{omthp(Ma, + o 22 u)Y fr(ma, + a; /%) H dP(z;)
j=1

:/HdMamu(acj)gn(u)du,
R

where

Man,U(zj) = exp{(Mma,, + a;l/%u)):l:j —Yp(Ma, + a;l/%u)dp(xj)
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gn(w) = 25 0, 2 explantp (ma, + 0y w)} fu(ma, + o/ w),

where ¥ (£q,,) = Ma, + uan %k
Since [p - [pdQa, (@1, ,xqa,) = 1 and [p Mo, u(%a,dza, =1
for each o, we see that [, gn(u)du = 1. Thus g,(u) is a density

function for each n. For fixed t € R, the c.g.f. of (S, —anba,) al=1/2%k

under dM,, , obtained as follows;

log B, . exp{t(Sa, — anean)/a};”%}
=log Enr,, ., [ [ exp{t(X; — anba, )a, 7/
j=1

= o, log[E,,,, , exp{t(X; — anba, ), 1717}
x exp{(Ma,, + o, *u)X; — p(ma, + o,/ ?Fu)}]
= wfp (ma, )t + Pp(ma, o, 7Y 4 o(1).

since Yp (M, ) = Oa,, - Taking limits as n — oo and noting that m,, —
m, we get

log Enr,, ., exp{u(Sa, — anba, )/ a1/}
L(m)ut if £>2
Lim)ut +Ph(m)t2 /2 if k=1

This shows that under M, , the limiting distribution of (S, —
1-1/2k

anba,)/om is degenerate at ¢% (m)uif k < 2 and N (% (m)u, % (m))
if K = 1. By Lemmas 4.5, 4.7 and 4.9 we get
__ halw) _ )
gn(u) - fhn(U)dU g(“) - fh(u)du as n — 00,

where h,,, h are defined by (4.5) and (4.6). The proof of the Theorem

4.4 is now completed using theorem of Sethuraman(1961) as follows;
When k£ < 2, the limiting distribution of (S,, — anfa.,) an 7R g

%(m)Uy, where Uy ~ g(u) and when k& = 1 we note that g(u) is
N(0,cy;) and thus the limiting distribution of (S,, — @,fa,,) an /2

is N(0,9p(m)[¢p(m) — ca]/c2).



On the Curie-Weiss model with a new Hamiltonian 313

REMARK 4.10. If a,, = n then the result is just the same with

theorem of Chaganty and Sethuraman(1987).

10.

11.

12.
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