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ON THE CURIE-WEISS MODEL
WITH A NEW HAMILTONIAN

Sang Ho Lee

Abstract. In this paper we obtain similar limit theorems of the

Generalized Curie - Weiss model for a new class Hamiltonian. We
expressed the saddlepoint approximation by large deviation rate

and then obtain the limit theorems.

1. Introduction

A ferromagnetic crystal consists of a large number of sites. The
amount of magnetic spin present at site i will be denoted by X(n)

i , i =
1, 2, · · · , n, where n is a positive integer. The magnetic spin present at
any site to some dependency among the random variables X(n)

i ’s. The
joint distribution, at a fixed temperature T > 0, of the spin random
variables (X(n)

1 , · · · , X(n)
n ), is given by

(1.1) dQ(x1, · · · , xn) = z−1
n exp

{
− Hn(x1, · · · , xn)

T

} n∏
i=1

dP (xi),

where P is a probability measure on R. The function Hn(x1, · · · , xn)
is known as the Hamiltonian and it represents the energy of the crys-
tal at the configuration (x1, · · · , xn) and zn is a normalizing con-
stant which is also known as the partition function. Simon and Grif-
fiths(1973) has a particular model in which the Hamiltonian is taken
as Hn(x1, · · · , xn) = −(x1 + · · · + xn)2/2n and P is replaced by PT

in (1.1) where PT (x) = P (x
√
T ). This is known as the Curie - Weiss
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model. And they obtained the asymptotic distribution of the total
magnetism Sn = X

(n)
1 + · · · + X

(n)
n for this model when P is a sym-

metric Bernoulli measure, i.e., P ({1}) = P ({−1}) = 1/2. The asymp-
totic distribution of the partial sum of spin random variables in the
Curie-Weiss model was obtained by Simon and Grifiths(1973). Ellis
and Newman(1978a, 1978b) extended the result of Simon and Griffiths
to a large class of probability measures. Jeon(1979) gave a statis-
tically motivated proof of this result and used the technique of the
proof to obtain similar limit theorems for a wider class of Hamiltoni-
ans, Hn(x1, · · · , xn) = − logϕn(sn/n), where ϕ is a moment generat-
ing function of a random variable Y . He also removed the assump-
tion that P is spherically symmetric. The results of Richter(1957) on
sums of independent, identically distributed random variables are gen-
eralized to arbitrary sequences of random variables by Chaganty and
Sethuraman(1985). Using the local limit theorem of Chaganty and
Sethuraman(1985) they obtain similar limit theorems for a wider class
of Hamiltonians, which are functions of moment generating functions
of suitable random variables. Utilizing the results of Daniels (1954)
that is the saddlepoint approximation of independent, identically dis-
tributed random variables, Lee, Kim and Joen(1993) obtain the dual
limit theorems of the generalized Curie - Weiss model.

In this paper, we obtain the similar limit theorems for the gen-
eralized Curie - Weiss model which were studied in Lee, Jeon and
Kim(1993). For this, we use the results of Jenson(1995) which gener-
alized saddlepoint method of arbitrary sequence of random variables
and obtain similar results for wider class of Hamiltonians.

2. Saddlepoint approximation

For a random variable X ∈ R defined on a probability space
(Ω,A, P ) the moment generating function ϕP (θ) for θ ∈ R is defined
as

ϕP (θ) = E exp{θX} =
∫

exp{θX}P (dω).

The domain of the transform is ΘP = {θ ∈ R : ϕP (θ) <∞}. The expo-
nential family generated by X and P consists of probability measures
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Pθ, θ ∈ ΘP , given by

dPθ(ω)
dP

= ϕ−1(θ) exp{θX(ω)}.

The cumulant generating function(c.g.f.) is ψP (θ) = logϕP (θ). More
generally, the moment generating function under Pθ is Eθ exp{ξX} =
ϕP (ξ + θ)/ϕP (θ), µP (θ) = EθX and σ2

P (θ) = V arθ(X) are the mean
and variance-covariance matrix of X under Pθ, respectively. That is,

µP (θ) = EθX =
∫
XdPθ =

∫
X
dPθ

dP
dP

=
∫
Xϕ−1

P (θ) exp{θX}dP =
∂ψP (θ)
∂θ

and

σ2
P (θ) = V arθ(X) =

∂2ψP (θ)
∂θ2

.

Denote LP (x) the Legendre-Fenchel transform of ψP (θ) by

(2.1) LP (x) = sup
θ∈Θp

`P (θ : x) = sup
θ∈Θp

{θx− ψP (θ)},

that is, the large deviation rate of ψP (θ) since ψP (θ) is a cumulant
generating function. The exponential family is called regular if ΘP is
open, that is, ΘP = intΘP . The `P (θ : x) attains its supremum at a
point θ̂(x), that is, LP (x) = `P (θ̂(x);x) if and only if x ∈ intC, where C
is the closed convex hull of the support of X. The point θ̂(x), x ∈ intC,
is unique and the solution of µP (θ) = x if x ∈ {µP (θ) : θ ∈ ΘP } ⊂
intC. When the exponential family is regular we have in fact that
{µP (θ) : θ ∈ ΘP } = intC, that is, µP (θ) = x has a solution θ ∈ ΘP for
any x ∈ intC. This is the saddlepoint. We consider only those values
of x for which there exists θ = θ̂(x) ∈ intΘP with µP (θ) = x.

Let {αn≥1 : αn ∈ Z+} be a sequence of positive integers such that
αn is strictly increasing as n → ∞. Let Yαn

∈ R, αn ∈ Z+, be
a non-lattice random variable with the moment generating function
ϕYαn

(θ) = E exp{θYαn
} defined for

θ ∈ ΘYαn
= {θ ∈ R : ϕYαn

(θ) <∞}.
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Furthermore, we let ψYαn
(θ) = 1

αn
logϕYαn

(θ), µYαn
(θ) = 1

αn

d
dθψYαn

(θ)

and σ2
Yαn

(θ) = 1
αn

d2

dθ2ψYαn
(θ). And let {mαn : αn ≥ 1} be a se-

quence of real numbers in R such that mαn
converges to m, as n→∞,

where mαn
= ψ′Yαm

(θαn
), θαn

∈ ΘYαn
and m = ψ′Yαn

(ζαn
) such that

ζαn ∈ ∩ΘYαn
for all αn ≥ 1. The saddlepoint θ = θ̂(x) will be de-

termined by µYαn
(θ) = x. Let Yn = Yαn

/αn. Then the saddlepoint
approximation to the density fn(x) of Yn = Yαn

/αn at x is

(2.2)

fn(x) =
α

1/2
n√

2πσαn
(θ)

× exp{−αn(θx− ψYαn
(θ))}[1 + o(1)]

=
α

1/2
n√

2πσαn
(θ)

× exp{−αnLYαn
(x))}[1 + o(1)] as αn →∞.

Remark 2.1. In the i.i.d. cases, Yαn
= Y ′

1 + · · · + Y ′
αn

, we obtain
ϕYαn

(θ) = (ϕ(θ))αn , with ϕ(θ) = E exp{θY ′
1}. And also we see that

ΘYαn
= {θ ∈ R : ϕYαn

(θ) < ∞} = {θ ∈ R : ϕ(θ) < ∞}, µYαn
(θ) =

µ(θ) and σ2
Yαn

(θ) = σ2(θ).

Remark 2.2. Under the some conditions there exists a subset Θ0 of
ΘYαn

for all αn, saddlepoint approximation holds uniformly for θ ∈ Θ0

and has relative error O(α−2
n ). See Jenson(1995).

3. Preliminaries

For a probability measure Q on R with the moment generating func-
tion ϕQ(θ) =

∫
R exp{tx}Q(dx) for θ ∈ ΘQ, let MQ be a class of prob-

ability measure P such that for
∫
ΘQ

ϕQ(θ)P (dθ) < ∞, where P is a
probability measure on R.

Let X(n)
i , i = 1, · · · , n, denote a triangular array of random vari-

ables with the joint distribution given by

(3.1) dQn(x1, · · · , xn) = z−1
n exp{ψQ[(x1 + · · ·+ xn)/n]}

n∏
i=1

dP (xi),
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where xi ∈ R, i = 1, · · · , n, zn is a normalized constant and P ∈MQ.
This model is called the generalized Curie-Weiss Model which is a direct
generalization of the Curie-Weiss model,

(3.2) dQn(x1, · · · , xn) = z−1
n exp{|x1 + · · ·+ xn|2/2n]}

n∏
i=1

dP (xi).

We now present the theorem of Sethuraman(1961) which was crucially
used to obtain the marginal limiting distribution in the proof of main
theorem.

Theorem 3.1. (Sethuraman;1961) Let λn be a sequence of proba-
bility measures on U × V , where U and V are topological spaces. Let
µn be the marginal probability measure of λn on U and νn(u, ·) be a
conditional probability measure on V . Suppose that µn converges to
a probability measure µ for every measurable set in U and for almost
all u with respect to µ, νn(u, ·) converges weakly to ν(u, ·). Then λn

converges weakly to λ, where λ(A × B) =
∫

A
ν(u,B)dµ(u), for every

measurable rectangle set A×B.

4. Main Results

Let {Yαn : n ≥ 1} be a fixed sequence of random variables in R
having a saddlepoint approximation (2.2) in section 2. and E(Yαn

) =
mαn

and V ar(Yαn
) = αnσ

2 for all αn ≥ 1. Let Q be a probability
measure on R with moment generating function ϕQ(θ) and cumulant
generating function ψQ(θ). For given a random variable Yαn and a
probability measure P ∈MQ, define

GYαn
(u) = LYαn

(u)− ψP (u) for all u ∈ ΘP ,

where LYαn
(u) is the large deviation rate of the random variable Yαn

and ψP (·) is the cumulant generating function of the probability mea-
sure P .

Definition 4.1. A real number m is said to be a global minimum
for GYαn

(·) if
GYαn

(u) ≥ GYαn (m) for all u.
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Definition 4.2. A global minimum m of GYαn
is said to be of type

k if

GYαn
(u+m)−GYαn

(m) = G(2k)(u) + o(|u|2k) as |u| → 0,

where G(2k)
Yαn

≡ c2ku
2k and c2k ≡ G

(2k)
Yαn

for u ∈ R.

Let X(αn)
1 , · · · , X(αn)

αn , αn ∈ Z+, be an array of random variables
with the joint distribution

(4.1) dQαn(x1, · · · , xαn) = z−1
αn

exp[αnψYαn
(sαn/αn)]

αn∏
j=1

dP (xj),

where zαn is a normalizing constant, and P ∈MYαn
. Here, each xj ∈

R, j = 1, 2, · · · and sαn
= x1+· · ·+xαn

. Let Sαn
= X

(αn)
1 +· · ·+X(αn)

αn .
The model (4.1) is the extended model of Chaganty and Sethura-

man(1985) and has the larger than Hamiltonian in the model.

Definition 4.3. Let M∗ be the class of probability measures P
defined on R satisfying the following two conditions

(4.2)
∫

R
exp{ψYαn

(u)}dP (u) <∞

and
(4.3)

There exists p, l > 0 such that
∫

R
exp{−lGYαn

(u)}du = O(αp
n).

Note that Qαn
is well defined because

zαn =
∫
· · ·

∫
exp{αnψYαn

(sαn/αn)}
αn∏
j=1

dP (xj)

≤
∫
· · ·

∫
exp{

αn∑
j=1

ψYαn
(xj)}

αn∏
j=1

dP (xj)

=
αn∏
j=1

exp{ψYαn
(xj)} <∞.
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Theorem 4.4. Let P ∈ M∗ and X
(αn)
1 , · · · , X(αn)

αn , αn ∈ Z+ be
an array of random variables with the joint distribution (4.1). Let
mαn

→ m as n→∞. Assume that the following conditions hold,

(C1) GYαn
has a global minimum of type k at mαn , for all αn.

(C2) G(2k)
Yαn

(mαn
) = c2k,αn

→ c2k as n→∞.

(C3) There exists ε > 0 such that G
(2k)
Yαn

(u) ≥ ε|u|2k, where

G(2k)(u) = c2ku
2k for u ∈ R. Then,

(4.4)
Sαn

− αnθαn

α
1−1/2k
n

d−−→
{
z−1
k exp[−c2ky

2k/[ψ′′P (m)]2k(2k)!] if k ≥ 2
N(0, ψ′′P (m)[ψ′′P (m)− c2]/c2) if k = 1

where zk is a normalizing constant, ψ′P (mαn
) = θαn

, c2 =
G

(2)
Yαn

(m) and c2k = G
(2k)
Yαn

(m) > 0.

The proof of this theorem follows from a sequences of following lem-
mas. Let

(4.5)

hn(u) = (2π)1/2σYαn
(ζαn

)α−1/2
n

× exp{αn[ψP (mαn + α−1/2k
n u)−GYαn

(mαn)]}

× fn(mαn
+ α−1/2k

n u)

and

(4.6) h(u) = exp{−G(2k)(u)} for all u,

where ψ′P (ζαn) = m, ζαn ∈ ΘYαn
for all αn ≥ 1.

Lemma 4.5. Let G
(2k)
Yαn

(mαn
) = c2k,αn

. If GYαn
has a global min-

imum of type k at mαn
and c2k,αn

→ c2k. Then hn(u) → h(u), as
n→∞.

Proof. Fix u ∈ R. By the saddlepoint approximation (2.2) we have
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as n→∞,

hn(u) = (2π)1/2σYαn
(ζαn

)α−1/2
n

× exp{αn[ψP (mαn + α−1/2k
n u)−GYαn

(mαn)]}

× α1/2
n (2π)−1/2σ−1

Yαn
(ζαn

)

× exp{−αnLYαn
(mαn

+ α−1/2k
n u)}[1 + o(1)]

= exp{−αn[GYαn
(mαn

+ α−1/2k
n u)−GYαn

(mαn
)]}[1 + o(1)]

= exp{−αn[α−1
n G(2k)(α−1/2k

n u) + o(α−1
n |u|2k)]}[1 + o(1)]

= exp{−G(2k)(u)}[1 + o(1)].

The lemma is now immediate taking limits as n→∞. �

Lemma 4.6. Let 0 < δ < 1/2k. Suppose that GYαn
’s have a unique

global minimum of type k at a point mαn
then there exists αN0 such

that for all αn ≤ αN0 ,

αn[GYαn
(mαn

+ α−1/2k
n u)−GYαn

(mαn
)]

≥ G(2k)(u)/2 uniformly for |u| < αδ
n.

Proof. By condition (C2), we can find αN1 such that for αn ≥ αN1 ,

|G(2k)
Yαn

(u)−G(2k)(u)| > ε|u|2k/4 for all u ∈ R.

Hence by condition (C3) there exists αN1 such that

(4.7) G
(2k)
Yαn

(u) > G(2k)(u)/2 + ε|u|2k/4 for all αn ≥ αN1 .

Since α−1
n |u|2k goes to 0 uniformly for |u| ≤ αδ

n and GYαn
has a global

minimum at the point mαn
we can find αN2 such that for all αn ≥ αN2 ,

(4.8) αn[GYαn
(mαn

+ α−1/2k
n u)−GYαn

(mαn
)] > G

(2k)
Yαn

(u)− ε|u|2k/4.

The lemma follows form (4.7) and (4.8) choosing N0 = max{N1, N2}.�
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Lemma 4.7. Let 0 < δ < 1/2k be fixed. Then

(4.9)
∫
|u|≤αδ

n

hn(u)du→
∫
h(u)du as n→∞.

Proof. Note that condition (C3) implies
∫
h(u)du < ∞. The proof

is completed using the dominated convergence theorem, Lemma 4.5
and Lemma 4.6. �

Lemma 4.8. Let {Yαn : αn ≥ 1} be a sequence of random variables
satisfying the condition of section 2. Then for all u ∈ R,

(4.10) exp{αnLYαn
(mαn

+ u)}fn(mαn
+ u) = O(α1/2

n ), as n→∞.

Proof. By the definition, as n→∞,
| exp{αnLYαn

(mαn
+ u)}fn(mαn

+ u)|

=
∣∣∣ α

1/2
n

(2π)1/2σYαn
(θ)

(1 + o(1))
∣∣∣. �

Lemma 4.9. Let 0 < δ < 1/2k be fixed and hn(u) be as defined by
(4.5). Then

(4.11)
∫
|u|≥αδ

n

hn(u)du→ 0 as n→∞.

Proof. ¿From Lemma 4.8 and condition (C1) we obtain the result.
By (4.5) we have∫

|u|>αδ
n

hn(u)du

= (2π)1/2σYαn
(ζαn

)α−1/2
n

×
∫
|u|>αδ

n

exp{αn[ψP (mαn
+ α−1/2k

n u) +GYαn
(mαn

)]}

× fn(mαn
+ α−1/2k

n u)du

= (2π)1/2σYαn
(ζαn)α−1/2

n

×
∫
|u|>αδ

n

exp{−αn[GYαn
(mαn + α−1/2k

n u) +GYαn
(mαn)]

+ αnLYαn
(mαn + α−1/2k

n u)}fn(mαn + α−1/2k
n u)du
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substituting u′ = α
−1/2k
n u, we get

∣∣∣ ∫
|u|>αδ

n

hn(u)du
∣∣∣

≤ (2π)1/2σYαn
(ζαn)α−(1−1/k)/2

n

×
∫
|u|>α

δ−1/2k
n

∣∣ exp{−αn[GYαn
(mαn + u)−GYαn

(mαn)]}
∣∣

× | exp{αnLYαn
(mαn + u)fn(mαn + u)|du

≤ O(αp+(1+1/k)/2
n )

× max
|u|≥α

δ−1/2k
n

exp{−(αn − l)[GYαn
(mαn + u)−GYαn

(mαn)]

×
∫

exp{−(αn − l)[GYαn
(mαn

+ u)−GYαn
(mαn

)]du

= O(αp+(1+1/k)/2
n )

× max
|u|≥α

δ−1/2k
n

exp{−(αn − l)[GYαn
(mαn

+ u)−GYαn
(mαn

)].

The last inequality follows from Lemma 4.8. Thus we get from condi-
tion (4.3)

∣∣∣ ∫
|u|>αδ

n

hn(u)du
∣∣∣ ≤ O(α2p+(1+1/k)/2

n )

× max
|u|≥α

δ−1/2k
n

exp{−(αn − l)[GYαn
(mαn

+ y)−GYαn
(mαn

)]}

= O(α2p+(1+1/k)/2
n ) exp{−(αn − l)Rn}

and
Rn = min

|u|>α
δ−1/2k
n

[GYαn
(mαn

+ y)−GYαn
(mαn

)]

= min{[GYαn
(αδ−1/2k

n +mαn
)−GYαn

(mαn
)],

[GYαn
(−αδ−1/2k

n +mαn
)−GYαn

(mαn
)]}

=
c2k,αn

(2k)!
α2k(δ−1/2k)

n + o(α2k(δ−1/2k)
n ),
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sincemαn
is the unique global minimum ofGYαn

and c2k,αn
> 0. Hence∣∣∣ ∫

|u|>αδ
n

hn(u)du
∣∣∣ ≤ O(α2p+(1+1/k)/2

n )

× exp
{
− (αn − l)

[c2k,αn

(2k)!
α2k(δ−1/2k)

n + o(α2k(δ−1/2k)
n )

]}
which goes to 0 since 0 < δ < 1/2k and the proof is complete. �

Now we proof the Theorem 4.4. We can express the joint distribution
Qαn

as follows;

dQαn(xα1 , · · · , xαn) = z−1
αn

exp[αnψYαn
(sαn/αn)]

αn∏
j=1

dP (xj)

= z−1
αn

∫
R

exp{sαn
y}fn(y)

αn∏
j=1

dP (xj).

Substituting y = mαn
+ α

−1/2k
n u,

dQαn
(x1, · · · , xαn

) = z−1
αn
α−1/2k

n

∫
R

exp{sαn
(mαn

+ α−1/2k
n u)}

× fn(mαn + α−1/2k
n u)

αn∏
j=1

dP (xj)

= z−1
αn
α−1/2k

n

∫
R

exp{sαn(mαn + α−1/2k
n u)− αnψP (mαn + α−1/2k

n u)}

× exp{αnψP (mαn
+ α−1/2k

n u)}fn(mαn
+ α−1/2k

n u)
αn∏
j=1

dP (xj)

=
∫

R

αn∏
j=1

dMαn,u(xj)gn(u)du,

where

Mαn,u(xj) = exp{(mαn + α−1/2k
n u))xj − ψP (mαn + α−1/2k

n u)dP (xj)
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and

gn(u) = z−1
αn
α−1/2k

n exp{αnψP (mαn
+ α−1/2k

n u)}fn(mαn
+ α−1/2k

n u),

where ψ′P (ξαn) = mαn + uα
−1/2k
n .

Since
∫

R · · ·
∫

R dQαn
(x1, · · · , xαn

) = 1 and
∫

R Mαn,u(xαj
dxαj

= 1
for each αj , we see that

∫
R gn(u)du = 1. Thus gn(u) is a density

function for each n. For fixed t ∈ R, the c.g.f. of (Sαn
−αnθαn

)/α1−1/2k
n

under dMαn,u obtained as follows;

logEMαn,u
exp{t(Sαn

− αnθαn
)/α1−1/2k

n }

= logEMαn,u

αn∏
j=1

exp{t(Xj − αnθαn
)α−(1−1/2k)

n

= αn log[EMαn,u
exp{t(Xj − αnθαn

)α−(1−1/2k)
n }

× exp{(mαn
+ α−1/2k

n u)Xj − ψP (mαn
+ α−1/2k

n u)}]

= uψ′′P (mαn
)t+ t2ψ′′P (mαn

)α−(1−1/2k)
n + o(1).

since ψ′P (mαn) = θαn . Taking limits as n→∞ and noting thatmαn →
m, we get

logEMαn,u
exp{u(Sαn

− αnθαn
)/α1−1/2k

n }

−−−→

{
ψ′′P (m)ut if k ≥ 2

ψ′′P (m)ut+ ψ′′P (m)t2/2 if k = 1.

This shows that under Mαn,u the limiting distribution of (Sαn
−

αnθαn
)/α1−1/2k

n is degenerate at ψ′′P (m)u if k ≤ 2 andN(ψ′′P (m)u, ψ′′P (m))
if k = 1. By Lemmas 4.5, 4.7 and 4.9 we get

gn(u) =
hn(u)∫
hn(u)du

−−−→ g(u) =
h(u)∫
h(u)du

as n→∞,

where hn, h are defined by (4.5) and (4.6). The proof of the Theorem
4.4 is now completed using theorem of Sethuraman(1961) as follows;
When k ≤ 2, the limiting distribution of (Sαn

− αnθαn
)/α1−1/2k

n is
ψ′′P (m)Uk, where Uk ∼ g(u) and when k = 1 we note that g(u) is
N(0, c−1

2k ) and thus the limiting distribution of (Sαn
−αnθαn

)/α1−1/2k
n

is N(0, ψ′′P (m)[ψ′′P (m)− c2]/c2).
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Remark 4.10. If αn = n then the result is just the same with
theorem of Chaganty and Sethuraman(1987).
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