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ORTHOGONAL GROUPS OF
QUATERNION ALGEBRAS

Young Ho Park

Abstract. The structure of orthogonal groups of quaternion alge-

bras is studied.

Let L be any field, and a, b ∈ L∗. The quaternion algebra B =
(
a,b
L

)
is the L-algebra on two generators i, j with the defining relations:

i2 = a, j2 = b, k = ij = −ji.

Then B is a central L-simple algebra of dimension 4 over L with basis
{1, i, j, k}. Note that if L′ is any extension field of L, then

(1)
(

a, b

L

)
⊗ L′ =

(
a, b

L′

)
.

For any quaternion x = a1 + a2i + a3j + a4k, the conjugate of x is
defined by

x′ = a1 − a2i− a3j − a4k,

and, its reduced norm N and reduced trace Tr are defined by

Nx = xx′, Trx = x + x′.

If we define
(x, y)B = Tr (xy′)

then B, ( , )B becomes a regular quadratic space with an orthogo-
nal basis {1, i, j, k} and its matrix is given by diag (2,−2a,−2b, 2ab).
Therefore det B = 1 in L∗/L∗2.

Received July 1, 1999.

1991 Mathematics Subject Classification: 15A63.

Key words and phrases: quaternion algebras, orthogonal groups.



282 Young Ho Park

Now we study the structure of O(B). First we recall the theorem
of Cartan-Dieudonné. Let U, ( , ) be any quadratic space. For any
anisotropic u ∈ U , the symmetry τu is defined by

τu(x) = x− 2(x, u)
(u, u)

u.

It is clear that det τu = −1, and τ2
u = 1.

Theorem 1 [Cartan-Dieudonné]. Let U, ( , ) be a regular qua-
dratic space of dimension n. Then every isometry in O(V ) is a product
of at most n symmetries.

Let B∗ be the set of units in B. B∗ is exactly the set of anisotropic
vectors in B. For any u ∈ B∗,

(3) τu(x) = −ux′(u′)−1.

Recall that the spinor norm is

θ(τu) = N(u)

by definition. Hence it is not difficult to see that rotations, being
products of 4 symmetries, have the form

(4) ρ(u, v) : x 7→ uxv−1,

and reflections, being products of 3 symmetries, have the form

(5) τ(u, v) : x 7→ −ux′v−1,

and that

(6) θ(ρ(u, v)) = θ(τ(u, v)) = N(u) = N(v),

where u, v ∈ B∗ with N(u) = N(v). Next, observe that ρ(u1, v1) 6=
τ(u2, v2) for any ui, vi ∈ B∗, i = 1, 2. That is,

(7) ρ(u, v) ∈ SO(B).

Otherwise there would be u, v ∈ B∗ such that −ux′v−1 = x for all
x ∈ B. Taking x ∈ L, we must have v = −u. Hence ux′u−1 = x for all
x. Then take x = u, so that we have u = u′, that is, u ∈ L∗. But then
x′ = x for all x, which is absurd. Let

(B∗)20 = { (u, v) ∈ B∗ ×B∗ | N(u) = N(v) }
B1 = {u ∈ B∗ | N(u) = 1 } .
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Theorem 2. We have an exact sequence

(9) 1 −−−−→ L∗ −−−−→ (B∗)20
ρ−−−−→ SO(B) −−−−→ 1,

where L∗ is embedded into (B∗)20 diagonally. In particular,

SO(B) ' (B∗)20/L∗.

Furthermore, the following sequence is also exact:

(10) 1 −−−−→ ρ((B1)2) −−−−→ SO(B) θ−−−−→ L∗/L∗2 −−−−→ 1.

Proof. First part follows from the discussion above and the fact that
B is central. For the second part we show that ker θ ⊂ ρ((B1)2). Let
h = ρ(u, v) ∈ SO(B) with θ(h) = N(u) ∈ L∗2. Write α2 = N(u) for
α ∈ L∗ and let u1 = α−1u, v1 = α−1v. Then (u1, v1) ∈ (B1)2 and
hence h = ρ(u, v) = ρ(u1, v1). Now everything else is clear from the
discussion above. �

Finally, we note that O(B) is generated by SO(B) and the quater-
nion conjugation.
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