ORTHOGONAL GROUPS OF QUATERNION ALGEBRAS

Young Ho Park

Abstract. The structure of orthogonal groups of quaternion alge-
bras is studied.

Let L be any field, and $a, b \in L^{*}$. The quaternion algebra $B=\left(\frac{a, b}{L}\right)$ is the L-algebra on two generators i, j with the defining relations:

$$
i^{2}=a, \quad j^{2}=b, \quad k=i j=-j i .
$$

Then B is a central L-simple algebra of dimension 4 over L with basis $\{1, i, j, k\}$. Note that if L^{\prime} is any extension field of L, then

$$
\begin{equation*}
\left(\frac{a, b}{L}\right) \otimes L^{\prime}=\left(\frac{a, b}{L^{\prime}}\right) \tag{1}
\end{equation*}
$$

For any quaternion $x=a_{1}+a_{2} i+a_{3} j+a_{4} k$, the conjugate of x is defined by

$$
x^{\prime}=a_{1}-a_{2} i-a_{3} j-a_{4} k,
$$

and, its reduced norm N and reduced trace Tr are defined by

$$
N x=x x^{\prime}, \quad \operatorname{Tr} x=x+x^{\prime}
$$

If we define

$$
(x, y)_{B}=\operatorname{Tr}\left(x y^{\prime}\right)
$$

then $B,(,)_{B}$ becomes a regular quadratic space with an orthogonal basis $\{1, i, j, k\}$ and its matrix is given by diag $(2,-2 a,-2 b, 2 a b)$. Therefore $\operatorname{det} B=1$ in $L^{*} / L^{* 2}$.

Now we study the structure of $O(B)$. First we recall the theorem of Cartan-Dieudonné. Let $U,($,$) be any quadratic space. For any$ anisotropic $u \in U$, the symmetry τ_{u} is defined by

$$
\tau_{u}(x)=x-\frac{2(x, u)}{(u, u)} u
$$

It is clear that $\operatorname{det} \tau_{u}=-1$, and $\tau_{u}^{2}=1$.
Theorem 1 [Cartan-Dieudonné]. Let U, (,) be a regular quadratic space of dimension n. Then every isometry in $O(V)$ is a product of at most n symmetries.

Let B^{*} be the set of units in $B . B^{*}$ is exactly the set of anisotropic vectors in B. For any $u \in B^{*}$,

$$
\begin{equation*}
\tau_{u}(x)=-u x^{\prime}\left(u^{\prime}\right)^{-1} . \tag{3}
\end{equation*}
$$

Recall that the spinor norm is

$$
\theta\left(\tau_{u}\right)=N(u)
$$

by definition. Hence it is not difficult to see that rotations, being products of 4 symmetries, have the form

$$
\begin{equation*}
\rho(u, v): x \mapsto u x v^{-1}, \tag{4}
\end{equation*}
$$

and reflections, being products of 3 symmetries, have the form

$$
\begin{equation*}
\tau(u, v): x \mapsto-u x^{\prime} v^{-1} \tag{5}
\end{equation*}
$$

and that

$$
\begin{equation*}
\theta(\rho(u, v))=\theta(\tau(u, v))=N(u)=N(v) \tag{6}
\end{equation*}
$$

where $u, v \in B^{*}$ with $N(u)=N(v)$. Next, observe that $\rho\left(u_{1}, v_{1}\right) \neq$ $\tau\left(u_{2}, v_{2}\right)$ for any $u_{i}, v_{i} \in B^{*}, i=1,2$. That is,

$$
\begin{equation*}
\rho(u, v) \in S O(B) \tag{7}
\end{equation*}
$$

Otherwise there would be $u, v \in B^{*}$ such that $-u x^{\prime} v^{-1}=x$ for all $x \in B$. Taking $x \in L$, we must have $v=-u$. Hence $u x^{\prime} u^{-1}=x$ for all x. Then take $x=u$, so that we have $u=u^{\prime}$, that is, $u \in L^{*}$. But then $x^{\prime}=x$ for all x, which is absurd. Let

$$
\begin{aligned}
\left(B^{*}\right)_{0}^{2} & =\left\{(u, v) \in B^{*} \times B^{*} \mid N(u)=N(v)\right\} \\
B^{1} & =\left\{u \in B^{*} \mid N(u)=1\right\}
\end{aligned}
$$

Theorem 2. We have an exact sequence
(9) $1 \longrightarrow L^{*} \longrightarrow\left(B^{*}\right)_{0}^{2} \longrightarrow{ }^{\rho} S O(B) \longrightarrow 1$,
where L^{*} is embedded into $\left(B^{*}\right)_{0}^{2}$ diagonally. In particular,

$$
S O(B) \simeq\left(B^{*}\right)_{0}^{2} / L^{*}
$$

Furthermore, the following sequence is also exact:

$$
\begin{equation*}
1 \longrightarrow \rho\left(\left(B^{1}\right)^{2}\right) \longrightarrow S O(B) \xrightarrow{\theta} L^{*} / L^{* 2} \longrightarrow 1 . \tag{10}
\end{equation*}
$$

Proof. First part follows from the discussion above and the fact that B is central. For the second part we show that $\operatorname{ker} \theta \subset \rho\left(\left(B^{1}\right)^{2}\right)$. Let $h=\rho(u, v) \in S O(B)$ with $\theta(h)=N(u) \in L^{* 2}$. Write $\alpha^{2}=N(u)$ for $\alpha \in L^{*}$ and let $u_{1}=\alpha^{-1} u, v_{1}=\alpha^{-1} v$. Then $\left(u_{1}, v_{1}\right) \in\left(B^{1}\right)^{2}$ and hence $h=\rho(u, v)=\rho\left(u_{1}, v_{1}\right)$. Now everything else is clear from the discussion above.

Finally, we note that $O(B)$ is generated by $S O(B)$ and the quaternion conjugation.

References

1. Jacobson, Basic algebra II, Freeman, New York, 1980.
2. T.Y.Lam, The algebraic theory of quadratic forms, W. A. Benjamin, Reading, 1973.
3. O.T.O'Meara, Introduction to quadratic forms, Springer-Verlag, Berlin, 1973.

Department of Mathematics
Kangwon National University
Chuncheon 200-701, Korea

