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CONVERGENCE OF EXPONENTIALLY
BOUNDED C−SEMIGROUPS

Young S. Lee

Abstract. In this paper, we discuss convergence theorem for ex-

ponentially bounded C-semigroups. We establish the convergence of
the sequence of generators of exponentially bounded C-semigroups

in some sense implies the convergence of the sequence of the corre-
sponding exponentially bounded C-semigroups. Under the assump-

tion that R(C) is dense, we show the equivalence between the con-

vergence of generators and exponentially bounded C-semigroups.

1. Introduction

Let X be a Banach space and let A be a linear operator from D(A) ⊂
X to X. Many problems in applied mathematics occur in the form of
a Cauchy problem

(CP) u′(t) = Au(t), t ≥ 0, u(0) = x,

where x ∈ D(A). It is well known that for a densely defined linear
operator A with nonempty resolvent set, (CP) has a unique solution
for all x ∈ D(A) if and only if A is the infinitesimal generator of a C0

semigroup {T (t) : t ≥ 0}. And the solution is given by the semigroup,
u(t) = T (t)x for every x ∈ D(A) (see Pazy [6]). For a non-densely
defined linear operator A, it is also known that if A is the generator
of C-semigroup {S(t) : t ≥ 0}, then (CP) has a unique solution u(t),
given by u(t) = S(t)C−1x for all x ∈ C(D(A)) (see deLaubenfels [2]
or Tanaka and Miyadera [7]). C-semigroups are a generalization of C0

semigroups and C-semigroup theory allows us to study many ill-posed
Cauchy problems, for example, Schrödinger equation on Lp, p 6= 2.
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In the case of C0 semigroup, the convergence of a sequence of infini-
tesimal generators in some sense is equivalent to the convergence of the
corresponding C0 semigroups. Roughly speaking, a C0 semigroup T (t)
depends continuously on its infinitesimal generator A and the infini-
tesimal generator A also depends continuously on the corresponding
C-semigroup (see [6]). So the solution of (CP) given by C0 semigroup
depends continuously on A. In this paper, paralleling the convergence
of C0 semigroups we establish the convergence of a sequence of gen-
erators of C-semigroups in some sense implies the convergence of a
sequence of the corresponding C-semigroups. That is, the solution of
(CP) given by C-semigroup also depends on A. Under the assumption
that R(C) is dense, we have the equivalence between the convergence
of generators and the convergence of corresponding C-semigroups.

2. Convergence of C-semigroups

Throughout this paper, X will be a Banach space. C will be a
bounded injective linear operator on X. For an operator A, we will
write D(A) for its domain and R(A) for its range.

We start with the definitions and properties of C-semigroup.

Definition 2.1. The family {S(t) : t ≥ 0} of bounded linear oper-
ators from X into itself is called a C-semigroup if it has the following
properties;

(1) S(0) = C, S(t + s)C = S(t)S(s) for t, s ≥ 0.
(2) For each x ∈ X, S(t)x is continuous in t ≥ 0.

A C-semigroup {S(t) : t ≥ 0} is said to be exponentially bounded if
there exist M ≥ 0 and ω ∈ R such that ||S(t)|| ≤ Meωt for t ≥ 0.

Definition 2.2. The generator A of a C-semigroup {S(t) : t ≥ 0}
is defined by

Ax = C−1

(
lim
t→0

1
t
(S(t)x− Cx)

)
with

D(A) = {x ∈ X : lim
t→0

1
t
(S(t)x− Cx) exists and is in R(C)}.
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If C = I, the identity operator on X, then a C-semigroup is a C0

semigroup in the ordinary sense. The infinitesimal generator of a C0

semigroup is densely defined and has nonempty resolvent set. But the
generator of a C-semigroup may not have these properties (see Example
6.2 in [2]). It is not difficult to show that if A is the infinitesimal
generator of a C0 semigroup {T (t) : t ≥ 0} that commutes with C,
then A is the generator of the C-semigroup {CT (t) : t ≥ 0}.

For r > ω, we define a bounded linear operator LA
r on X by

LA
r x =

∫ ∞

0

e−rtS(t)xdt for x ∈ X.

Then LA
r is injective and the linear operator Z defined by

Zx = (r − (LA
r )−1C)x

with D(Z) = {x ∈ X : Cx ∈ R(LA
r )}, is independent of r > ω (see [1]).

Next, we present some known facts about C-semigroup and its gen-
erator, which will be used in the sequel (see [2, 5, 7]).

Lemma 2.3. Suppose that A is a generator of an exponentially
bounded C-semigroup {S(t) : t ≥ 0} satisfying ||S(t)|| ≤ Meωt for
t ≥ 0. Then

(1) A = Z.

(2) A is a closed linear operator with D(A) ⊃ R(C).
(3) For all x ∈ D(A) and t ≥ 0, S(t)x ∈ D(A) and d/dt(S(t)x) =

AS(t)x = S(t)Ax.
(4) r −A is injective and R(C) ⊂ R(r −A) for r > ω.
(5) For any x ∈ X, r > ω and positive integer n, R(C) ⊂ D((r −

A)−n) and

(r −A)−nCx =
1

(n− 1)!

∫ ∞

0

tn−1e−rtS(t)xdt,

which implies ||(r − ω)n(r −A)−nC|| ≤ M.
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Lemma 2.4. Suppose that A is the generator of an exponentially
bounded C-semigroup {S(t) : t ≥ 0} satisfying ||S(t)|| ≤ Meωt for
t ≥ 0.

(1) For r > ω and x ∈ X, LA
r x ∈ D(A) and (r −A)LA

r x = Cx.
(2) For r > ω and x ∈ D(A), LA

r (r −A)x = Cx.

Now we establish the continuous dependence of an exponentially
bounded C-semigroup on its generator. Under the assumption that
R(C) is dense in X, we can show that the convergence of a sequence of
exponentially bounded C-semigroups is equivalent to the convergence
of a sequence of their generators. We start with a lemma.

Lemma 2.5. Let A and B be the generators of the exponentially
bounded C-semigroups {T (t) : t ≥ 0} and {S(t) : t ≥ 0}, respectively,
satisfying ||T (t)|| ≤ Meωt and ||S(t)|| ≤ Meωt for t ≥ 0. Then for
every x in X and r > ω

LB
r (T (t)− S(t))LA

r x =
∫ t

0

S(t− s)(LA
r − LB

r )T (s)xds.

Proof. Let x ∈ X and r > ω. Then

d

ds
(S(t− s)LB

r T (s)LA
r x)

= −S(t− s)BLB
r T (s)LA

r x + S(t− s)LB
r T (s)ALA

r x

= S(t− s)(C − rLB
r )T (s)LA

r x + S(t− s)LB
r T (s)(rLA

r − C)x

= CS(t− s)(LA
r − LB

r )T (s)x.

Integrating this equality from 0 to t, we have

C

∫ t

0

S(t− s)(LA
r − LB

r )T (s)xds =
∫ t

0

d

ds

(
S(t− s)LB

r T (s)LA
r x

)
ds

= S(0)LB
r T (t)LA

r x− S(t)LB
r T (0)LA

r x

= C(LB
r T (t)LA

r x− LB
r S(t)LA

r x).

Since C is injective, the result follows. �
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Theorem 2.6. Let A and An be generators of the exponentially
bounded C-semigroups {S(t) : t ≥ 0} and {Sn(t) : t ≥ 0}, respectively,
satisfying ||S(t)|| ≤ Meωt and ||Sn(t)|| ≤ Meωt for t ≥ 0.

Suppose that C(D(A)) is dense in R(r −A) for r > ω and

lim
n→∞

(r −An)−1y = (r −A)−1y for y ∈ R(C).

Then

lim
n→∞

Sn(t)x = S(t)x for x ∈ C(D(A))

and the convergence is uniform on bounded t-intervals.

Proof. Suppose that limn→∞(r − An)−1y = (r − A)−1y for all y ∈
R(C). By Lemma 2.3 (5), we have

lim
n→∞

LAn
r x = LA

r x for x ∈ X.

Let x ∈ D(A) and let 0 ≤ t ≤ T . Then

Sn(t)Cx− S(t)Cx

= Sn(t)LA
r (r −A)x− S(t)LA

r (r −A)x

= Sn(t)LA
r (r −A)x− Sn(t)LAn

r (r −A)x

+ Sn(t)LAn
r (r −A)x− LAn

r S(t)(r −A)x

+ LAn
r S(t)(r −A)x− S(t)LA

r (r −A)x

By the similar method in the proof of Theorem 4.2 in [6], the first
and third terms in the last equation tend to zero as n →∞.

By Lemma 2.3 (1), for z ∈ D(A) there exists w ∈ X such that
Cz = LA

r w. By Lemma 2.5, we have

LAn
r Sn(t)Cz − LAn

r S(t)Cz

= LAn
r (Sn(t)− S(t))LA

r w

=
∫ t

0

Sn(t− s)(LAn
r − LA

r )S(t)wds.
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So

||LAn
r Sn(t)Cz − LAn

r S(t)Cz||

≤
∫ t

0

||Sn(t− s)|| ||(LAn
r − LA

r )S(s)w||ds

≤
∫ T

0

||Sn(t− s)|| ||(LAn
r − LA

r )S(s)w||ds,

for 0 ≤ t ≤ T . The integrand is bounded by 2M3eωT /(r − ω)||w|| and
it goes to zero as n →∞. By the Lebesgue’s Dominated Convergence
Theorem,

lim
n→∞

(LAn
r Sn(t)Cz − LAn

r S(t)Cz) = 0 for z ∈ D(A),

and the convergence is uniform on 0 ≤ t ≤ T .
Since C(D(A)) is dense in R(r − A), for given ε > 0 and x ∈ D(A)

there exists Cz in C(D(A)) such that ||(r −A)x− Cz|| < ε. Thus

||LAn
r Sn(t)(r −A)x− LAn

r S(t)(r −A)x||
≤ ||LAn

r Sn(t)(r −A)x− LAn
r Sn(t)Cz||

+ ||LAn
r Sn(t)Cz − LAn

r S(t)Cz||
+ ||LAn

r S(t)Cz − LAn
r S(t)(r −A)x||

≤ 2M2

r − ω
eωt||(r −A)x− Cz||+ ||LAn

r Sn(t)Cz − LAn
r S(t)Cz||

≤ 2M2

r − ω
eωT ε + ||LAn

r Sn(t)Cz − LAn
r S(t)Cz||

Therefore limn→∞ Sn(t)Cx = S(t)Cx for all x ∈ D(A) and the con-
vergence is uniform on bounded t-intervals. �

Under the assumption that R(C) is dense in X, we have the following
equivalence between the convergence of generators and the convergence
of exponentially bounded C-semigroups.
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Theorem 2.7. Let A and An be generators of the exponentially
bounded C-semigroups {S(t) : t ≥ 0} and {Sn(t) : t ≥ 0}, respectively,
satisfying ||S(t)|| ≤ Meωt and ||Sn(t)|| ≤ Meωt for t ≥ 0.

Suppose that R(C) is dense in X. Then the following are equiva-
lent:

(1) limn→∞(r −An)−1y = (r −A)−1y for y ∈ R(C).
(2) limn→∞ Sn(t)x = S(t)x for x ∈ X and the convergence is

uniform on bounded t-intervals.

Proof. Suppose that limn→∞(r−An)−1y = (r−A)−1y for y ∈ R(C).
By Theorem 2.6, we have limn→∞ Sn(t)Cx = S(t)Cx for x ∈ D(A) and
the convergence is uniform on [0, T ]. Since R(C) is dense in X, D(A)
is dense and so C(D(A)) is also dense in X. The uniform boundedness
of ||Sn(t)− S(t)|| implies

lim
n→∞

Sn(t)x = S(t)x, for x ∈ X, uniformly on [0, T ].

Assume that (2) holds. For r > ω and x ∈ X,

||(r −An)−1Cx− (r −A)−1Cx||

= ||
∫ ∞

0

e−rtSn(t)xdt−
∫ ∞

0

e−rtS(t)xdt||

≤
∫ ∞

0

e−rt||(Sn(t)− S(t))x||dt.

By Lebesgue’s Dominated Convergence Theorem, we have

lim
n→∞

(r −An)−1Cx = (r −A)−1Cx for x ∈ X. �

If C = I, the identity operator on X, then A and An are the infini-
tesimal generators of C0 semigroups {S(t) : t ≥ 0} and {Sn(t) : t ≥ 0},
respectively. In this case, D(A) is dense in X and for r > ω, r is in
the resolvent set of A and An. So the convergence of resolvents on
R(C) implies the convergence of resolvents of generators on the whole
space X. So our result includes the Trotter-Kato type convergence
theorem for C0 semigroups. And our result also includes Theorem 2.3
in [3]. To see this we only need to show that limn→∞Anx = Ax for
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x ∈ D(A) ⊂ D(An) implies that limn→∞(r−An)−1y = (r−A)−1y for
y ∈ R(C). Since R(C) ⊂ R(r − A), there exists x in D(A) such that
y = (r −A)x. So we obtain

||(r −An)−1y − (r −A)−1y||
= ||(r −An)−1(r −A)x− (r −A)−1(r −A)x||
= ||(r −An)−1(r −An + An −A)x− x||
= ||Anx−Ax||.
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