PROPERTIES OF THE REIDEMEISTER NUMBERS ON TRANSFORMATION GROUPS

Soo Youp Ahn and In Jae Chung

ABSTRACT. Let (X,G) be a transformation group and $\sigma(X,x_0,G)$ the fundamental group of (X,G). In this paper, we prove that the Reidemeister number $R(f_G)$ for an endomorphism $f_G:(X,G)\to (X,G)$ is a homotopy invariant. In particular, when any self-map $f:X\to X$ is homotopic to the identity map, we give some calculation of the lower bound of $R(f_G)$. Finally, we discuss commutativity and product formula for the Reidemeister number $R(f_G)$.

1. Introduction

In [5], F. Rhodes represented the fundamental group $\sigma(X, x_0, G)$ of a transformation group (X, G), a group G of homeomorphisms of a space X, as a generalization of the fundamental group $\pi_1(X, G)$ of a topological space X. On the other hand, Ahn and Chung [1] studied the Reidemeister number for an endomorphism of a transformation group (X, G) as an extension of the Reidemeister number R(f) for any self-map $f: X \to X$.

One objective of this paper is to show that the Reidemeister number $R(f_G)$ for an endomorphism of (X,G) is a homotopy invariance, and that the cardinality of the center of $\sigma(X,x_0,G)$ is an lower bound for the Reidemeister number $R(f_G)$ which any self-map $f:X\to X$ is homotopic to the identity map. In the second place, we prove the properties of the Reidemeister number $R(f_G)$ as follows: commutativity and product formula.

In this paper, we always assume that the spaces X and Y are compact connected polyhedra. The reader may refer to [5] for more de-

Received January 10, 1999.

¹⁹⁹¹ Mathematics Subject Classification: 55M20, 57M05.

Key words and phrases: fundamental group $\sigma(X, x_0, G)$, f_{σ} -equivalent, (algebraic) Reidemeister number, diagonal path.

tails on the fundamental group $\sigma(X, x_0, G)$ of a transformation group (X, G).

2. Properties of the Reidemeister number

Let $f: X \to X$ be a self-map. In [5], if λ is a path from $f(x_0)$ to x_0 , then λ induces an isomorphism

$$\lambda_*: \sigma(X, f(x_0), G) \to \sigma(X, x_0, G)$$

defined by $\lambda_*[\alpha; g] = [\lambda \rho + \alpha + g\lambda; g]$ for each $[\alpha; g] \in \sigma(X, f(x_0), G)$, where $\rho(t) = 1 - t$. This isomorphism λ_* depends only on the homotopy class of λ .

In this section, we consider an endomorphism of (X,G). For the composition

$$\sigma(X, x_0, G) \xrightarrow{f_*} \sigma(X, f(x_0), G) \xrightarrow{\lambda_*} \sigma(X, x_0, G),$$

we denote $\lambda_* f_* = f_{\sigma}$. In [1], two elements $[\alpha; g_1]$ and $[\beta; g_2]$ of $\sigma(X, x_0, G)$ are said to be f_{σ} -equivalent, $[\alpha; g_1] \sim [\beta; g_2]$, if there exists $[\gamma; g] \in \sigma(X, x_0, G)$ such that

$$[\alpha; g_1] = [\gamma; g][\beta; g_2] f_{\sigma}([\gamma; g]^{-1}).$$

This is an equivalence relation on $\sigma(X, x_0, G)$. Let $\sigma(X, x_0, G)'(f_{\sigma})$ be the set of equivalence classes of $\sigma(X, x_0, G)$ under f_{σ} -equivalence. The number of elements of the set $\sigma(X, x_0, G)'(f_{\sigma})$ called the algebraic Reidemeister number of f_{σ} , denoted by $R_*(f_{\sigma})$. With this definition, we may define the Reidemeister number of an endomorphism $f_G: (X, G) \to (X, G), R(f_G)$, to be the algebraic Reidemeister number of f_{σ} , that is,

$$R(f_G) = R_*(f_\sigma).$$

LEMMA 1. The definition of $R(f_G)$ is independent of the choice of the path λ from $f(x_0)$ to x_0 and the base-point $x_0 \in X$.

Proof. (1) Independence of λ . Suppose that τ is another path from $f(x_0)$ to x_0 . Then $\lambda^{-1}\tau$ is a loop at x_0 . Since

$$(\lambda^{-1}\tau)_*([\alpha;g]) = [\lambda^{-1}\tau\rho + \alpha + g\lambda^{-1}\tau;g]$$
$$= [\lambda^{-1}\tau\rho;e][\alpha;g][\lambda^{-1}\tau;e],$$

the loop $\lambda^{-1}\tau$ induces an inner automorphism

$$(\lambda^{-1}\tau)_*: \sigma(X, x_0, G) \to \sigma(X, x_0, G)$$

generated by the element $[\lambda^{-1}\tau;e]$.

Applying this automorphism to the left-hand side of $\lambda_* f_*$, we have

$$R_*(\lambda_* f_*) = R_*(\tau_* \lambda_*^{-1} \lambda_* f_*)$$
$$= R(\tau_* f_*).$$

Hence we have independence of the path λ .

(2) Independence of $x_0 \in X$. For $x_1 \in X$, let γ be a path from x_0 to x_1 . Then $f \circ \gamma$ is a path from $f(x_0)$ to $f(x_1)$. Since γ and $f \circ \gamma$ induce isomorphisms γ_* and $(f \circ \gamma)_*$ respectively, we obtain the following commutative diagram:

where λ' is a path from $f(x_1)$ to x_1 . Since $\lambda_* = \gamma_*^{-1} \lambda'_* (f \circ \gamma)_*$ and $f_* = (f \circ \gamma)_*^{-1} f'_* \gamma_*$,

$$R_*(\lambda_* f_*) = R_*(\gamma_*^{-1} \lambda_*' f_*' \gamma_*)$$

= $R_*(\lambda_*' f_*').$

For a given homotopy $F: f \cong h: X \to X$ and a given path $c: I \to X$, define the diagonal path $\Delta(F,c): I \to X$ by $\Delta(F,c)(t) = F(c(t),t), 0 \leq t \leq 1$. Let $\Delta^{-1}(F,c)$ denote the inverse of diagonal path $\Delta(F,c)$. Then the path $\Delta(F,c)$ preserves inverse in the following sence.

LEMMA 2. [4]
$$\triangle^{-1}(F,c) = \triangle(F^{-1},c^{-1}).$$

THEOREM 3. (Homotopy invariance) Let f_G and h_G be endomorphisms of (X,G). If $F: f \cong h: X \to X$ is homotopy from f to h, then $R(f_G) = R(h_G)$.

Proof. Let $x_0 \in X$. Then $\Delta(F,c)$ is a path from $f(x_0)$ to $h(x_0)$. Thus the path $\Delta(F,c)$ induces a homomorphism

$$\triangle (F,c)_* : \sigma(X,f(x_0),G) \to \sigma(X,h(x_0),G).$$

So we obtain the following induced commutative diagram

$$\sigma(X, x_0, G) \xrightarrow{f_*} \sigma(X, f(x_0), G)$$

$$h_* \searrow \nearrow \triangle (F^{-1}, x_0)_*$$

$$\sigma(X, h(x_0), G)$$

From Lemma 1 and Lemma 2, we have

$$R(f_G) = R_*(\lambda_* f_*)$$

$$= R_*(\lambda_* \Delta (F, x_0)_*^{-1} h_*)$$

$$= R_*((\Delta (F^{-1}, x_0)\lambda)_* h_*)$$

$$= R(h_G).$$

THEOREM 4. If a self-map $f: X \to X$ is homotopic to the identity map id_X of X, then

$$R(f_G) = R(id_X) \ge |Z(\sigma(X, x_0, G))| \ge 1,$$

where $|Z(\sigma(X, x_0, G))|$ is the number of elements of the center of $\sigma(X, x_0, G)$.

Proof. Obiously, the first equality follows from Theorem 3. Since $Z(\sigma(X, x_0, G))$ contains at least the identity element $[x'_0; e]$, where x'_0 is the constant map $x'_0: I \to X$, we have

$$|Z((X, x_0, G))| > 1.$$

Now we prove that $R(id_X) \geq |Z((X, x_0, G))|$. Consider

$$\sigma(X, x_0, G) \xrightarrow{id_*} \sigma(X, x_0, G) \xrightarrow{\lambda} \sigma(X, x_0, G).$$

For any element $[\alpha; g_1] \in \sigma(X, x_0, G)$, the id_X -equivalence class $[\alpha; g_1]$ containing $[\alpha; g_1]$ is the set

$$\{ [\gamma; g_2] [\alpha; g_1] \lambda_* [\gamma; g_2]^{-1} | [\gamma; g_2] \in \sigma(X, x_0, G) \}.$$

Since λ is a loop at x_0 ,

$$\lambda_*([\gamma; g_2]^{-1}) = \lambda_*([g_2^{-1}\gamma\rho; g_2^{-1}])$$

$$= [\lambda\rho; e][g_2^{-1}\gamma\rho; g_2^{-1}][\lambda; e]$$

$$= [\lambda\rho; e][\gamma; g_2]^{-1}[\lambda; e].$$

If $[\alpha; g_1] \in Z(\sigma(X, x_0, G))$, then the id_X -equivalence class consists of the single element $\lambda_*[\alpha; g_1]$, that is,

$$\overline{[\alpha; g_1]} = \{ [\lambda; e][\alpha; g_1][\lambda; e] \}$$
$$= \{ \lambda_* [\alpha; g_1] \}.$$

Hence we have the desired result.

THEOREM 5. (Commutativity) Let f_G and h_G be endomorphisms of (X, G). Then

$$R(f_G \circ h_G) = R(h_G \circ f_G).$$

Proof. From the following composition

$$\sigma(X, x_0, G) \xrightarrow{f_*} \sigma(X, f(x_0), G) \xrightarrow{h_*} \sigma(X, (h \circ f)(x_0), G),$$

we get $h_* \circ f_* = (h \circ f)_*$. Similarly, $f_* \circ h_* = (f \circ h)_*$. Let λ be a path from $(h \circ f)(x_0)$ to $(f \circ h)_*(x_0)$. Then λ induces an isomorphism

$$\lambda_* : \sigma(X, (h \circ f)(x_0), G) \to \sigma(X, (f \circ h)(x_0), G).$$

Thus we consider the following commutative diagram:

$$\sigma(X, x_0, G) \xrightarrow{(h \circ f)_*} \sigma(X, (h \circ f)(x_0), G)
\downarrow^{\tau_*}
\sigma(X, (f \circ h)(x_0), G) \xrightarrow{\gamma_*} \sigma(X, x_0, G)$$

where τ is a path from $(h \circ f)(x_0)$ to x_0 and γ is a path from $(f \circ h)(x_0)$ to x_0 .

Since
$$(f \circ h)_* = \lambda_*(h \circ f)_*$$
 and $\gamma_* = \tau_* \lambda_*^{-1}$, we have
$$R(f_G \circ h_G) = R((f \circ h)_G)$$

$$= R_*(\gamma_*(f \circ h)_*)$$

$$= R_*((\tau_* \lambda_*^{-1})(\lambda_*(h \circ f)_*))$$

$$= R_*(\tau_*(h \circ f)_*)$$

$$= R(h_G \circ f_G).$$

Hence we complete the proof of this theorem.

Let α_x be a path of order g with base–point x_0 in X, and α_y be a path of order h with base–point y_0 in Y. Then a path $\theta(\alpha_x, \alpha_y)$ of order (g, h) with base–point (x_0, y_0) in $X \times Y$ is defined by

$$\theta(\alpha_x, \alpha_y) = \begin{cases} (\alpha_x(2t), y_0), & 0 \le t \le \frac{1}{2}, \\ (gx_0, \alpha_y(2t-1)), & \frac{1}{2} \le t \le 1. \end{cases}$$

Note that we can see easily $(g,h)\theta(g\alpha_x,\alpha_y)=\theta(g\alpha_x,h\alpha_y)$ and $\theta(\alpha_x,\alpha_y)\rho=\theta(\alpha_x\rho,\alpha_y\rho)$, where $\rho(t)=1-t$. The homotopy class of $\theta(\alpha_x,\alpha_y)$ depends only on the homotopy classes of α_x and α_y . Hence θ induces an isomorphism

$$\theta_* : \sigma(X, x_0, G) \times \sigma(Y, y_0, H) \to \sigma(X \times Y, (x_0, y_0), G \times H)$$
$$\theta([\alpha_x; g], [\alpha_y; h]) = [\theta(\alpha_x, \alpha_y); (g, h)].$$

For an endomorphism $f'_H:(Y,H)\to (Y,H)$ and a homomorphism

$$f'_{\sigma}: \sigma(Y, y_0, H) \rightarrow \sigma(Y, y_0, H),$$

let $\sigma(Y, y_0, H)'(f'_{\sigma})$ be the set of equivalence classes of $\sigma(Y, y_0, H)$ under f'_{σ} -equivalence.

THEOREM 6. (Product formula) Let f_G and f'_H be endomorphisms of (X, G) and (Y, H) respectively. Then

$$R(f_G \times f_H') = R(f_G) \cdot R(f_H').$$

Proof. Note that if $[\alpha_x, g_1] \sim [\alpha_x'; g_2]$ and $[\alpha_y; h_1] \sim [\alpha_y'; h_2]$, then

$$[\theta(\alpha_x, \alpha_y); (g_1, h_1)] \sim [\theta(\alpha_x', \alpha_y'); (g_2, h_2)].$$

The isomorphism θ_* induces an isomorphism

$$\overline{\theta_*} : \sigma(X, x_0, G)'(f_\sigma) \times \sigma(Y, y_0, H)'(f'_\sigma) \to \sigma(X \times Y, (x_0, y_0), G \times H)'(f_\sigma \times f'_\sigma).$$

Thus we obtain the following commutative diagram:

$$\sigma(X, x_0, G) \xrightarrow{\pi_1} \sigma(X, x_0, G)'(f_\sigma) \times \sigma(Y, y_0, H)'(f'_\sigma)$$

$$\theta_* \downarrow \qquad \qquad \overline{\theta_*} \downarrow$$

$$\sigma(X \times Y, (x_0, y_0), G \times H) \xrightarrow{\pi_2} \sigma(X \times Y, (x_0, y_0), G \times H)'(f_\sigma \times f'_\sigma),$$

where π_1 and π_2 are the natural projections. Hence

$$R(f_G \times f'_H) = |\sigma(X \times Y, (x_0, y_0), G \times H)'(f_\sigma \times f'_\sigma)|$$

$$= |\sigma(X, x_0, G)'(f_\sigma) \times \sigma(Y, y_0, H)'(f'_\sigma)|$$

$$= |\sigma(X, x_0, G)'(f_\sigma)| \cdot |\sigma(Y, y_0, H)'(f'_\sigma)|$$

$$= R(f_G) \cdot R(f'_H).$$

References

- 1. S. Y. Ahn and I. J. Chung, *The Reidemeister numbers on transformation groups*, Comm. Korean Math. Soc. 11 (1996), 445–455.
- 2. R. F. Brown, *The Lefschetz Fixed Point Theorem*, Scott, Foresman and Company, Glenview, Illiois, 1971.
- 3. B. J. Jiang, Lectures on Nielsen fixed point theory, Comtemporary Math., 14 Amer. Math. Soc. Providence, R. I. (1983), 1–99.

- 4. T. H. Kiang, *The theory of fixed point classes*, Science Press, Beijing, 1979 (Chinse); English edition, Springer-Verlag, Berlin, New York, 1989.
- 5. F. Rhodes, On the fundamental group of a transformation group, Proc. London Math. Soc. 16 (1966), 635–650.

Department of Mathematics Education Kon-Kuk University Seoul 133–701, Korea