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PROPERTIES OF THE REIDEMEISTER
NUMBERS ON TRANSFORMATION GROUPS

Soo Youp Ahn and In Jae Chung

Abstract. Let (X, G) be a transformation group and σ(X, x0, G)

the fundamental group of (X, G). In this paper, we prove that the

Reidemeister number R(fG) for an endomorphism fG : (X, G) →
(X, G) is a homotopy invariant. In particular, when any self-map f :

X → X is homotopic to the identity map, we give some calculation

of the lower bound of R(fG). Finally, we discuss commutativity
and product formula for the Reidemeister number R(fG).

1. Introduction

In [5], F. Rhodes represented the fundamental group σ(X, x0, G) of
a transformation group (X, G), a group G of homeomorphisms of a
space X, as a generalization of the fundamental group π1(X, G) of a
topological space X. On the other hand, Ahn and Chung [1] studied
the Reidemeister number for an endomorphism of a transformation
group (X, G) as an extension of the Reidemeister number R(f) for any
self-map f : X → X.

One objective of this paper is to show that the Reidemeister num-
ber R(fG) for an endomorphism of (X, G) is a homotopy invariance,
and that the cardinality of the center of σ(X, x0, G) is an lower bound
for the Reidemeister number R(fG) which any self-map f : X → X is
homotopic to the identity map. In the second place, we prove the prop-
erties of the Reidemeister number R(fG) as follows : commutativity
and product formula.

In this paper, we always assume that the spaces X and Y are com-
pact connected polyhedra. The reader may refer to [5] for more de-
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tails on the fundamental group σ(X, x0, G) of a transformation group
(X, G).

2. Properties of the Reidemeister number

Let f : X → X be a self-map. In [5], if λ is a path from f(x0) to
x0, then λ induces an isomorphism

λ∗ : σ(X, f(x0), G) → σ(X, x0, G)

defined by λ∗[α; g] = [λρ + α + gλ; g] for each [α; g] ∈ σ(X, f(x0), G),
where ρ(t) = 1−t. This isomorphism λ∗ depends only on the homotopy
class of λ.

In this section, we consider an endomorphism of (X, G). For the
composition

σ(X, x0, G)
f∗−→ σ(X, f(x0), G) λ∗−→ σ(X, x0, G),

we denote λ∗f∗ = fσ. In [1], two elements [α; g1] and [β; g2] of σ(X, x0, G)
are said to be fσ–equivalent, [α; g1] ∼ [β; g2], if there exists [γ; g] ∈
σ(X, x0, G) such that

[α; g1] = [γ; g][β; g2]fσ([γ; g]−1).

This is an equivalence relation on σ(X, x0, G). Let σ(X, x0, G)′(fσ)
be the set of equivalence classes of σ(X, x0, G) under fσ–equivalence.
The number of elements of the set σ(X, x0, G)′(fσ) called the alge-
braic Reidemeister number of fσ, denoted by R∗(fσ). With this def-
inition, we may define the Reidemeister number of an endomorphism
fG : (X, G) → (X, G), R(fG), to be the algebraic Reidemeister number
of fσ, that is,

R(fG) = R∗(fσ).

Lemma 1. The definition of R(fG) is independent of the choice of
the path λ from f(x0) to x0 and the base-point x0 ∈ X.
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Proof. (1) Independence of λ. Suppose that τ is another path from
f(x0) to x0. Then λ−1τ is a loop at x0. Since

(λ−1τ)∗([α; g]) = [λ−1τρ + α + gλ−1τ ; g]

= [λ−1τρ; e][α; g][λ−1τ ; e],

the loop λ−1τ induces an inner automorphism

(λ−1τ)∗ : σ(X, x0, G) → σ(X, x0, G)

generated by the element [λ−1τ ; e].
Applying this automorphism to the left-hand side of λ∗f∗, we have

R∗(λ∗f∗) = R∗(τ∗λ−1
∗ λ∗f∗)

= R(τ∗f∗).

Hence we have independenceof the path λ.
(2) Independence of x0 ∈ X. For x1 ∈ X, let γ be a path from

x0 to x1. Then f ◦ γ is a path from f(x0) to f(x1). Since γ and
f ◦ γ induce isomorphisms γ∗ and (f ◦ γ)∗ respectively, we obtain the
following commutative diagram :

σ(X, x0, G)
f∗−−−−→ σ(X, f(x0), G) λ∗−−−−→ σ(X, x0, G)

γ∗

y (f◦γ)∗

y γ∗

y
σ(X, x1, G)

f ′
∗−−−−→ σ(X, f(x1), G)

λ′
∗−−−−→ σ(X, x1, G)

where λ′ is a path from f(x1) to x1. Since λ∗ = γ−1
∗ λ′∗(f ◦ γ)∗ and

f∗ = (f ◦ γ)−1
∗ f ′∗γ∗,

R∗(λ∗f∗) = R∗(γ−1
∗ λ′∗f

′
∗γ∗)

= R∗(λ′∗f
′
∗). �

For a given homotopy F : f ∼= h : X → X and a given path
c : I → X, define the diagonal path M (F, c) : I → X by M (F, c)(t) =
F (c(t), t), 0 ≤ t ≤ 1. Let M−1 (F, c) denote the inverse of diagonal
path M (F, c). Then the path M (F, c) preserves inverse in the following
sence.
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Lemma 2. [4] M−1 (F, c) =M (F−1, c−1).

Theorem 3. (Homotopy invariance) Let fG and hG be endomor-
phisms of (X, G). If F : f ∼= h : X → X is homotopy from f to h, then
R(fG) = R(hG).

Proof. Let x0 ∈ X. Then M (F, c) is a path from f(x0) to h(x0).
Thus the path M (F, c) induces a homomorphism

M (F, c)∗ : σ(X, f(x0), G) → σ(X, h(x0), G).

So we obtain the following induced commutative diagram

σ(X, x0, G)
f∗−→ σ(X, f(x0), G)

h∗ ↘ ↗M (F−1, x0)∗

σ(X, h(x0), G)

From Lemma 1 and Lemma 2, we have

R(fG) = R∗(λ∗f∗)

= R∗(λ∗ M (F, x0)−1
∗ h∗)

= R∗((M (F−1, x0)λ)∗h∗)

= R(hG). �

Theorem 4. If a self-map f : X → X is homotopic to the identity
map idX of X, then

R(fG) = R(idX) ≥ |Z(σ(X, x0, G))| ≥ 1,

where |Z(σ(X, x0, G))| is the number of elements of the center of
σ(X, x0, G).

Proof. Obiously, the first equality follows from Theorem 3. Since
Z(σ(X, x0, G)) contains at least the identity element [x′0; e], where x′0
is the constant map x′0 : I → X, we have

|Z((X, x0, G))| ≥ 1.
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Now we prove that R(idX) ≥ |Z((X, x0, G))|. Consider

σ(X, x0, G) id∗−−→ σ(X, x0, G) λ−→ σ(X, x0, G).

For any element [α; g1] ∈ σ(X, x0, G), the idX–equivalence class [α; g1]
containing [α; g1] is the set

{[γ; g2][α; g1]λ∗[γ; g2]−1|[γ; g2] ∈ σ(X, x0, G)}.

Since λ is a loop at x0,

λ∗([γ; g2]−1) = λ∗([g−1
2 γρ; g−1

2 ])

= [λρ; e][g−1
2 γρ; g−1

2 ][λ; e]

= [λρ; e][γ; g2]−1[λ; e].

If [α; g1] ∈ Z(σ(X, x0, G)), then the idX–equivalence class consists of
the single element λ∗[α; g1], that is,

[α; g1] = {[λ; e][α; g1][λ; e]}
= {λ∗[α; g1]}.

Hence we have the desired result. �

Theorem 5. (Commutativity) Let fG and hG be endomorphisms
of (X, G). Then

R(fG ◦ hG) = R(hG ◦ fG).

Proof. From the following composition

σ(X, x0, G)
f∗−→ σ(X, f(x0), G) h∗−→ σ(X, (h ◦ f)(x0), G),

we get h∗ ◦ f∗ = (h ◦ f)∗. Similarly, f∗ ◦h∗ = (f ◦h)∗. Let λ be a path
from (h ◦ f)(x0) to (f ◦ h)∗(x0). Then λ induces an isomorphism

λ∗ : σ(X, (h ◦ f)(x0), G) → σ(X, (f ◦ h)(x0), G).
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Thus we consider the following commutative diagram :

σ(X, x0, G)
(h◦f)∗−−−−→ σ(X, (h ◦ f)(x0), G)

(f◦h)∗

y yτ∗

σ(X, (f ◦ h)(x0), G)
γ∗−−−−→ σ(X, x0, G)

where τ is a path from (h◦f)(x0) to x0 and γ is a path from (f ◦h)(x0)
to x0.

Since (f ◦ h)∗ = λ∗(h ◦ f)∗ and γ∗ = τ∗λ
−1
∗ , we have

R(fG ◦ hG) = R((f ◦ h)G)

= R∗(γ∗(f ◦ h)∗)

= R∗((τ∗λ−1
∗ )(λ∗(h ◦ f)∗))

= R∗(τ∗(h ◦ f)∗)

= R(hG ◦ fG).

Hence we complete the proof of this theorem. �

Let αx be a path of order g with base–point x0 in X, and αy be
a path of order h with base–point y0 in Y . Then a path θ(αx, αy) of
order (g, h) with base–point (x0, y0) in X × Y is defined by

θ(αx, αy) =
{

(αx(2t), y0), 0 ≤ t ≤ 1
2 ,

(gx0, αy(2t− 1)), 1
2 ≤ t ≤ 1.

Note that we can see easily (g, h)θ(gαx, αy) = θ(gαx, hαy) and
θ(αx, αy)ρ = θ(αxρ, αyρ), where ρ(t) = 1 − t. The homotopy class of
θ(αx, αy) depends only on the homotopy classes of αx and αy. Hence
θ induces an isomorphism

θ∗ : σ(X, x0, G)× σ(Y, y0,H) → σ(X × Y, (x0, y0), G×H)

θ([αx; g], [αy;h]) = [θ(αx, αy); (g, h)].

For an endomorphism f ′H : (Y, H) → (Y, H) and a homomorphism

f ′σ : σ(Y, y0,H) → σ(Y, y0,H),

let σ(Y, y0,H)′(f ′σ) be the set of equivalence classes of σ(Y, y0,H) under
f ′σ–equivalence.
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Theorem 6. (Product formula) Let fG and f ′H be endomorphisms
of (X, G) and (Y, H) respectively. Then

R(fG × f ′H) = R(fG) ·R(f ′H).

Proof. Note that if [αx, g1] ∼ [α′
x; g2] and [αy;h1] ∼ [α′

y;h2], then

[θ(αx, αy); (g1, h1)] ∼ [θ(α′
x, α′

y); (g2, h2)].

The isomorphism θ∗ induces an isomorphism

θ∗ :σ(X, x0, G)′(fσ)× σ(Y, y0,H)′(f ′σ) →
σ(X × Y, (x0, y0), G×H)′(fσ × f ′σ).

Thus we obtain the following commutative diagram :

σ(X, x0, G) π1−−−−→ σ(X, x0, G)′(fσ)× σ(Y, y0,H)′(f ′σ)

θ∗

y θ∗

y
σ(X × Y, (x0, y0), G×H) π2−−−−→ σ(X × Y, (x0, y0), G×H)′(fσ × f ′σ),

where π1 and π2 are the natural projections. Hence

R(fG × f ′H) = |σ(X × Y, (x0, y0), G×H)′(fσ × f ′σ)|
= |σ(X, x0, G)′(fσ)× σ(Y, y0,H)′(f ′σ)|
= |σ(X, x0, G)′(fσ)| · |σ(Y, y0,H)′(f ′σ)|
= R(fG) ·R(f ′H).

�
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