ONE-DIMENSIONAL PARABOLIC p-LAPLACIAN EQUATION

Youngsang Ko

Abstract

In this paper we establish some bounds for solutions of parabolic one dimensional p-Laplacian equation.

1. Introduction

We consider the Cauchy problem of the form

$$
\begin{equation*}
u_{t}=\left(\left|u_{x}\right|^{p-2} u_{x}\right)_{x} \quad \text { in } \quad S=\mathbb{R} \times[0, \infty) \tag{1.1}
\end{equation*}
$$

where $p>2$.
Equations like (1.1) were studied by many authors and arise in different physical situations, for the detail see [7]. An important quantity of the study of equation (1.1) is the local velocity of propagation $V(x, t)$, whose expression in terms of u can be obtained by writing the equation as a conservation law in the form

$$
u_{t}+(u V)_{x}=0 .
$$

In this way we get

$$
V=-v_{x}\left|v_{x}\right|^{p-2},
$$

where the nonlinear potential $v(x, t)$ is

$$
\begin{equation*}
v=\frac{p-1}{p-2} u^{\frac{p-2}{p-1}} . \tag{1.2}
\end{equation*}
$$

and by direct computation v satisfies

$$
\begin{equation*}
v_{t}=(p-2) v\left|v_{x}\right|^{p-2} v_{x x}+\left|v_{x}\right|^{p} . \tag{1.3}
\end{equation*}
$$

Received December 3, 1998.
1991 Mathematics Subject Classification: 35J.
Key words and phrases: p-Laplacian, free boundary.

In [7], it was shown that V satisfies

$$
V_{x} \leq \frac{1}{2(p-1) t},
$$

which can also be written as

$$
\begin{equation*}
\left(v_{x}\left|v_{x}\right|^{p-2}\right)_{x} \geq-\frac{1}{2(p-1) t} . \tag{1.4}
\end{equation*}
$$

Without loss of generality we may consider the case where u_{0} vanishes on \mathbb{R}^{-}and is a continuous positive function, at least, on an interval $(0, a)$ with $a>0$. Let

$$
P[u]=\{(x, t) \in S: u(x, t)>0\}
$$

be the positivity set of a solution u. Then $P[u]$ is bounded to the left in (x, t)-plane by the left interface curve $x=\zeta(t)[7]$, where

$$
\zeta(t)=\inf \{x \in \mathbb{R}: u(x, t)>0\} .
$$

Moreover there is a time $t^{*} \in[0, \infty)$, called the waiting time, such that $\zeta(t)=0$ for $0 \leq t \leq t^{*}$ and $\zeta(t)<0$ for $t>t^{*}$. It is shown [7] that t^{*} is finite(possibly zero) and $\zeta(t)$ is a nonincreasing C^{1} function on $\left(t^{*}, \infty\right)$.

For the interface of the porous medium equation

$$
\begin{cases}u_{t}=\triangle\left(u^{m}\right) & \text { in } \quad \mathbb{R}^{n} \times[0, \infty) \\ u(x, 0)=u_{0} & \text { on } \\ \mathbb{R}^{n}\end{cases}
$$

much more is known. D. G. Aronson and J. L. Vazquez [2] and independently K. Höllig and H. O. Kreiss [8] showed the interfaces are smooth after the waiting time. S. Angenent [1] showed that the interfaces are real analytic after the waiting time. In dimensions $n>2$, L. A. Caffarelli and N. J. Wolanski [4] showed under some nondegeneracy conditions on the initial data, the interface can be described by a $C^{1, \alpha}$ function when $t>T$, for some $T>0$. Very recently, P. Daskalopoulos and R. Hamilton [6] showed the interface is smooth when $0<t<T$, for some $T>0$.

On the other hand much less is known for the parabolic p-Laplacian equation. For dimensions $n>2$, H. Choe and J. Kim [5] showed, under some nondegeneracy conditions on the initial data, the interface is Lipschitz continuous and one of the authors [9] improved this result, showing that, under the same hypotheses, the interface is a $C^{1, \alpha}$ surface after some time.

In [2], Aronson and Vazquez established C^{∞} regularity of the interfaces by establishing the bounds for $v^{(k)}$ for $k \geq 2$, where $v=\frac{m}{m-1} u^{m-1}$
represents the pressure of the gas flow through a porous medium, while u represents the density. In this paper we establish bounds for $v^{k}, k=2,3$, near the interface after the waiting time, where v is the solution of (1.3).

2. The Upper and Lower Bounds for $v_{x x}$

Let $q=\left(x_{0}, t_{0}\right)$ be a point on the left interface, so that $x_{0}=\zeta\left(t_{0}\right)$, $v\left(x, t_{0}\right)=0$ for all $x \leq \zeta\left(t_{0}\right)$, and $v\left(x, t_{0}\right)>0$ for all sufficiently small $x>\zeta\left(t_{0}\right)$. We assume the left interface is moving at q. Thus $t_{0}>t^{*}$. We shall use the notation
$R_{\delta, \eta}=R_{\delta, \eta}\left(t_{0}\right)=\left\{(x, t) \in \mathbb{R}^{2}: \zeta(t)<x \leq \zeta(t)+\delta, t_{0}-\eta \leq t \leq t_{0}+\eta\right\}$.
Proposition 2.1. Let q be the point as above. Then there exist positive constants C, δ and η depending only on p, q and u such that

$$
v_{x x} \geq C \quad \text { in } \quad R_{\delta, \eta / 2} .
$$

Proof. From (1.4) we have, $v_{x x} \geq-\frac{1}{2(p-1)^{2}\left|v_{x}\right|^{p-2} t}$. But from Lemma 4.4 in [7] v_{x} is bounded away and above from zero near q where $u(x, t)>0$.

Proposition 2.2. Let $q=\left(x_{0}, t_{0}\right)$ be as before. Then there exist positive constants C_{2}, δ and η depending only on p, q and u such that

$$
v_{x x} \leq C_{2} \quad \text { in } \quad R_{\delta, \eta / 2}
$$

Proof. From Theorem 2 and Lemma 4.4 in [7] we have

$$
\begin{equation*}
\zeta^{\prime}\left(t_{0}\right)=-v_{x}\left|v_{x}\right|^{p-2}=-v_{x}^{p-1}=-a \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{t}=\left|v_{x}\right|^{p} \tag{2.2}
\end{equation*}
$$

on the moving part of the interface $\left\{x=\zeta(t), t>t^{*}\right\}$. Choose $\epsilon>0$ such that

$$
\begin{equation*}
(p-1) a-5 p \epsilon \geq 4\left[(p-2)^{2}+(p-1)^{2}\right](a+\epsilon) \epsilon . \tag{2.3}
\end{equation*}
$$

Then by Theorem 2 in [7], there exists a $\delta=\delta(\epsilon)>0$ and $\eta=\eta(\epsilon) \in$ $\left(0, t_{0}-t^{*}\right)$ such that $R_{\delta, \eta} \subset P[u]$,

$$
\begin{equation*}
(a-\epsilon)^{\frac{1}{p-1}}<v_{x}<(a+\epsilon)^{\frac{1}{p-1}} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
v v_{x x} \leq(a-\epsilon)^{\frac{2}{p-1}} \epsilon \tag{2.5}
\end{equation*}
$$

in $R_{\delta, \eta}$. Then from (2.4) we have

$$
\begin{equation*}
(a-\epsilon)^{\frac{1}{p-1}}(x-\zeta)<v(x, t)<(a+\epsilon)^{\frac{1}{p-1}}(x-\zeta) \tag{2.6}
\end{equation*}
$$

in $R_{\delta, \eta}$ and

$$
\begin{equation*}
-(a+\epsilon)<\zeta^{\prime}(t)<-(a-\epsilon) \quad \text { in } \quad\left[t_{1}, t_{2}\right] \tag{2.7}
\end{equation*}
$$

where $t_{1}=t_{0}-\eta$ and $t_{2}=t_{0}+\eta$. We set

$$
\begin{equation*}
\zeta^{*}(t)=\zeta\left(t_{1}\right)-b\left(t-t_{1}\right) \tag{2.8}
\end{equation*}
$$

where $b=a+2 \epsilon$. Then clearly $\zeta(t)>\zeta^{*}(t)$ in $\left(t_{1}, t_{2}\right]$. On $P[u]$, $w \equiv v_{x x}$ satisfies

$$
\begin{aligned}
L(w)= & w_{t}-(p-2) v\left|v_{x}\right|^{p-2} w_{x x}-(3 p-4)\left|v_{x}\right|^{p-2} v_{x} w_{x} \\
& -\left[(p-2)^{2}+2(p-1)^{2}\right]\left|v_{x}\right|^{p-2} w^{2} \\
& -3(p-2)^{2} v\left|v_{x}\right|^{p-4} v_{x} w w_{x}-(p-2)^{2}(p-3) v\left|v_{x}\right|^{p-4} w^{3} \\
= & 0 .
\end{aligned}
$$

We shall construct a barrier for w in $R_{\delta, \eta}$ of the form

$$
\phi(x, t) \equiv \frac{\alpha}{x-\zeta(t)}+\frac{\beta}{x-\zeta^{*}(t)},
$$

where α and β will be decided later.
By a direct computation we have

$$
\begin{aligned}
L(\phi)= & \frac{\alpha}{(x-\zeta)^{2}}\left\{\zeta^{\prime}-(p-2) v\left|v_{x}\right|^{p-2} \frac{2}{x-\zeta}+(3 p-4)\left|v_{x}\right|^{p-2} v_{x}\right\} \\
& +\frac{\beta}{\left(x-\zeta^{*}\right)^{2}}\left\{\zeta^{*^{\prime}}-(p-2) v\left|v_{x}\right|^{p-2} \frac{2}{x-\zeta^{*}}+(3 p-4)\left|v_{x}\right|^{p-2} v_{x}\right\} \\
& -\left[(p-2)^{2}+2(p-1)^{2}\right]\left|v_{x}\right|^{p-2} \phi^{2}+\bar{G}
\end{aligned}
$$

where

$$
\begin{aligned}
\bar{G}= & -3(p-2)^{2} v v_{x}\left|v_{x}\right|^{p-4} \phi \phi_{x}-(p-2)^{2}(p-3) v\left|v_{x}\right|^{p-4} \phi^{3} \\
= & (p-2)^{2} v\left|v_{x}\right|^{p-4} \times \\
& \phi\left(3 v_{x}\left[\frac{\alpha}{(x-\zeta)^{2}}+\frac{\beta}{\left(x-\zeta^{*}\right)^{2}}\right]-(p-3)\left[\frac{\alpha}{x-\zeta}+\frac{\beta}{x-\zeta^{*}}\right]^{2}\right) .
\end{aligned}
$$

If we choose α and β satisfying

$$
v_{x} \geq|p-3| \max (\alpha, \beta),
$$

then $\bar{G} \geq 0$ in $R_{\delta, \eta}$. Now set $\bar{A}=\frac{\alpha}{(x-\zeta)^{2}}$ and $\bar{B}=\frac{\beta}{\left(x-\zeta^{*}\right)^{2}}$. Then we have

$$
\begin{aligned}
& L(\phi) \geq \bar{A}\left\{\zeta^{\prime}+\left|v_{x}\right|^{p-2}\left\{-(p-2) v \frac{2}{x-\zeta}+(3 p-4) v_{x}\right.\right. \\
&\left.\left.-2\left[(p-2)^{2}+2(p-1)^{2}\right] \alpha\right\}\right\} \\
&+ \bar{B}\left\{\zeta^{*^{\prime}}+\left|v_{x}\right|^{p-2}\left\{-(p-2) v \frac{2}{x-\zeta^{*}}+(3 p-4) v_{x}\right.\right. \\
&\left.\left.-2\left[(p-2)^{2}+2(p-1)^{2}\right] \beta\right\}\right\} \\
& \geq \bar{A}\left\{(p-1) a-(5 p-7) \epsilon-2\left[(p-2)^{2}+2(p-1)^{2}\right](a+\epsilon)^{\frac{p-2}{p-1}} \alpha\right\} \\
&+\bar{B}\left\{(p-1) a-(5 p-6) \epsilon-2\left[(p-2)^{2}+2(p-1)^{2}\right](a+\epsilon)^{\frac{p-2}{p-1}} \beta\right\} .
\end{aligned}
$$

Set

$$
0<\alpha \leq \frac{(p-1) a-(5 p-7) \epsilon}{2\left[(p-2)^{2}+2(p-1)^{2}\right](a+\epsilon)^{\frac{p-2}{p-1}}}=\alpha_{0}
$$

and

$$
\begin{equation*}
\beta=\frac{(p-1) a-(5 p-6 \epsilon)}{2\left[(p-2)^{2}+2(p-1)^{2}\right](a+\epsilon)^{\frac{p-2}{p-1}}} . \tag{2.9}
\end{equation*}
$$

Then from (2.3) $\beta>0$ and $L(\phi) \geq 0$ in $R_{\delta, \eta}$ for all $\alpha \in\left(0, \alpha_{0}\right]$ and β.
Let us now compare w and ϕ on the parabolic boundary of $R_{\delta, \eta}$. In view of (2.5) and (2.6) we have

$$
v_{x x} \leq \frac{\epsilon(a-\epsilon)^{\frac{1}{p-1}}}{x-\zeta} \quad \text { in } \quad R_{\delta, \eta}
$$

and in particular

$$
v_{x x}(\zeta(t)+\delta, t) \leq \frac{\epsilon(a-\epsilon)^{\frac{1}{p-1}}}{\delta} \quad \text { in } \quad\left[t_{1}, t_{2}\right] .
$$

By the mean value theorem and (2.7) we have for some $\tau \in\left(t_{1}, t_{2}\right)$

$$
\begin{aligned}
\zeta(t)+\delta-\zeta^{*}(t) & =\delta+(a+2 \epsilon)\left(t-t_{1}\right)+\zeta^{\prime}(\tau)\left(t-t_{1}\right) \\
& \leq \delta+3 \epsilon\left(t-t_{1}\right) \leq \delta+6 \epsilon \eta .
\end{aligned}
$$

Now set

$$
\eta \equiv \min \{\eta(\epsilon), \delta(\epsilon) / 6 \epsilon\}
$$

Since ϵ satisfies (2.3) and β is given by (2.9) it follows that

$$
\begin{aligned}
\phi(\zeta+\delta, t) \geq \frac{\beta}{2 \delta} & \geq \frac{(p-1) a-(5 p-6 \epsilon)}{4\left[(p-2)^{2}+2(p-1)^{2}\right](a+\epsilon)^{\frac{p-2}{p-1}} \delta} \\
& \geq \frac{(a+\epsilon)^{\frac{1}{p-1}}}{\delta} \epsilon \geq v_{x x} \quad \text { on } \quad\left[t_{1}, t_{2}\right]
\end{aligned}
$$

Moreover from (3.5) and (2.9)

$$
\phi\left(x, t_{1}\right) \geq \frac{\beta}{x-\zeta\left(t_{1}\right)}>\frac{\epsilon(a-\epsilon)^{\frac{1}{p-1}}}{x-\zeta\left(t_{1}\right)}>v_{x x}\left(x, t_{1}\right) \quad \text { on } \quad\left(\zeta\left(t_{1}\right), \zeta\left(t_{1}\right)+\delta\right] .
$$

Let $\Gamma=\left\{(x, t) \in \mathbb{R}^{2}: x=\zeta(t), t_{1} \leq t \leq t_{2}\right\}$. Clearly Γ is a compact subset of \mathbb{R}^{2}. Fix $\alpha \in\left(0, \alpha_{0}\right)$. For each point $s \in \Gamma$ there is an open ball B_{s} centered at s such that

$$
\left(v v_{x x}\right)(x, t) \leq \alpha(a-\epsilon)^{\frac{1}{p-1}} \quad \text { in } \quad B_{s} \cap P[u] .
$$

In view of (2.6) we have

$$
\phi(x, t) \geq \frac{\alpha}{x-\zeta} \geq v_{x x}(x, t) \quad \text { in } \quad B_{s} \cap P[u] .
$$

Since Γ can be covered by a finite number of these balls it follows that there is a $\gamma=\gamma(\alpha) \in(0, \delta)$ such that

$$
\phi(x, t) \geq w(x, t) \quad \text { in } \quad R_{\delta, \eta}
$$

Thus for every $\alpha \in\left(0, \alpha_{0}\right), \phi$ is a barrier for w in $R_{\delta, \eta}$. By the comparison principle for parabolic equations [10] we conclude that

$$
v_{x x}(x, t) \leq \frac{\alpha}{x-\zeta(t)}+\frac{\beta}{x-\zeta^{*}(t)} \quad \text { in } \quad R_{\delta, \eta},
$$

where β is given by (2.9) and $\alpha \in\left(0, \alpha_{0}\right)$ is arbitrary. Now let $\alpha \downarrow 0$ to obtain

$$
v_{x x}(x, t) \leq \frac{\beta}{x-\zeta^{*}} \leq \frac{2 \beta}{\epsilon \eta} \quad \text { in } \quad \mathbb{R}
$$

3. Bounds for $\left(\frac{\partial}{\partial x}\right)^{3} v$

In this section we find the estimates of the derivatives of the form

$$
v^{(3)} \equiv\left(\frac{\partial}{\partial x}\right)^{3} v
$$

By a direct computation we have,

$$
\begin{gathered}
\left(\mathcal{Z} 3\left(v^{(3)}\right)=v_{t}^{(3)}-(p-2) v v_{x}^{p-2} v_{x x}^{(3)}-(A+B) v_{x}^{(3)}-C v^{(3)}-D\left(v^{(3)}\right)^{2}\right. \\
-E v_{x}^{p-3} v_{x x}^{3}-(p-2)^{2}(p-3)(p-4) v v_{x}^{p-5} v_{x x}^{4}=0
\end{gathered}
$$

where

$$
\begin{aligned}
A & =(p-2) v_{x}^{p-1}+(p-2)^{2} v v_{x}^{p-3} v_{x x}, \\
B & =(3 p-4) v_{x}^{p-1}+3(p-2)^{2} v v_{x}^{p-3} v_{x x}, \\
C & =v_{x x} v_{x}^{p-2}\{(3 p-4)(p-1) \\
& \left.+2\left[(p-2)^{2}+2(p-1)^{2}\right]+6(p-2)^{2}(p-3) v v_{x}^{-2} v_{x x}+3(p-2)^{2}\right\}, \\
D & =3(p-2)^{2} v v_{x}^{p-3}, \\
E & =\left[(p-2)^{2}+2(p-1)^{2}\right](p-2)+(p-2)^{2}(p-3) .
\end{aligned}
$$

Suppose that $q=\left(x_{0}, t_{0}\right)$ is a point on the left interface for which (2.1) holds. Fix $\epsilon \in(0, a)$ and take $\delta_{0}=\delta_{0}(\epsilon)>0$ and $\eta_{0}=\eta(\epsilon) \in\left(0, t_{0}-t^{*}\right)$ such that $R_{0} \equiv R_{\delta_{0}, \eta_{0}}\left(t_{0}\right) \subset P[u]$ and (2.5) holds. Thus we also have (2.6) and (2.7) in R_{0}. Then by rescaling and interior estimate we have

Proposition 3.1. There are constants $K \in \mathbb{R}^{+}, \delta \in\left(0, \delta_{0}\right)$, and $\eta \in\left(0, \eta_{0}\right)$ depending only on p, q and C_{2} such that

$$
\left|v^{(3)}(x, t)\right| \leq \frac{K}{x-\zeta(t)} \quad \text { in } \quad R_{\delta, \eta} .
$$

Proof. Set

$$
\begin{gathered}
\delta=\min \left\{\frac{2 \delta_{0}}{3}, 2 s \eta_{0}\right\}, \\
\eta=\eta_{0}-\frac{\delta}{4 s},
\end{gathered}
$$

and define

$$
R(\bar{x}, \bar{t}) \equiv\left\{(x, t) \in \mathbb{R}^{2}:|x-\bar{x}|<\frac{\lambda}{2}, \bar{t}-\frac{\lambda}{4 s}<t \leq \bar{t}\right\}
$$

for $(\bar{x}, \bar{t}) \in R_{\delta, \eta}$, where $s=a+\epsilon$ and $\lambda=\bar{x}-\zeta(\bar{t})$. Then $(\bar{x}, \bar{t}) \in R_{\delta, \eta}$ implies that $R(\bar{x}, \bar{t}) \subset R_{0}$. Since $\delta_{0} \geq \frac{3 \delta}{2}, \lambda<\delta$ and ζ is nonincreasing, we have

$$
t_{0}-\eta_{0}=t_{0}-\eta-\frac{\lambda}{4 s}<t<t_{0}+\eta<t_{0}+\eta_{0}
$$

and

$$
\bar{x}-\frac{\lambda}{2}=\bar{x}-\frac{\bar{x}+\zeta(\bar{t})}{2}=\frac{\bar{x}+\zeta(\bar{t})}{2}>\zeta\left(t_{0}+\eta_{0}\right)
$$

$$
\zeta\left(t_{0}-\eta\right)+\delta+\frac{\lambda}{2}<\zeta\left(t_{0}-\eta_{0}\right)
$$

Also observe that for each $(\bar{x}, \bar{t}) \in R_{\delta, \eta}, R(\bar{x}, \bar{t})$ lies to the right of the line $x=\zeta(\bar{t})+s(\bar{t}-t)$. Next set $x=\lambda \xi+\bar{x}$ and $t=\lambda \tau+\bar{t}$. The function

$$
W(\xi, \tau) \equiv v_{x x}(\lambda \xi+\bar{x}, \lambda \tau+\bar{t})=v_{x x}(x, t)
$$

satisfies the equation

$$
\begin{align*}
W_{\tau}= & \left\{(p-2) \frac{v}{\lambda} v_{x}^{p-2} W_{\xi}+(3 p-4) v_{x}^{p-1} W\right\}_{\xi} \\
& +\left[2(p-2)^{2} v v_{x}^{p-3} v_{x x}-(p-2) v_{x}^{p-1}\right] W_{\xi} \tag{3.2}\\
& +\lambda\left[(p-2)^{2}(p-3) v v_{x}^{p-4}\left(v_{x x}\right)^{3}-(p-2) v_{x}^{p-2}\left(v_{x x}\right)^{2}\right]
\end{align*}
$$

in the region

$$
B \equiv\left\{(\xi, \tau) \in \mathbb{R}^{2}:|\xi| \leq \frac{1}{2},-\frac{1}{4 s}<\tau \leq 0\right\}
$$

and $|W| \leq C_{2}$ in B. In view of (2.6) and (2.7)

$$
(a-\epsilon)^{\frac{1}{p-1}} \frac{x-\zeta(t)}{\lambda} \leq \frac{v(x, t)}{\lambda} \leq(a+\epsilon)^{\frac{1}{p-1}} \frac{x-\zeta(t)}{\lambda}
$$

and

$$
\zeta(\bar{t}) \leq \zeta(t) \leq \zeta(\bar{t})+s(\bar{t}-t) \leq \zeta(\bar{t})+\frac{\lambda}{4}
$$

Therefore

$$
\frac{\lambda}{4}=\bar{x}-\frac{\lambda}{2}-\zeta(\bar{t})-\frac{\lambda}{4} \leq x-\zeta(t) \leq \bar{x}+\frac{\lambda}{2}-\zeta(\bar{t})=\frac{3 \lambda}{2}
$$

which implies

$$
\frac{(a-\epsilon)^{\frac{1}{p^{-1}}}}{4} \leq \frac{v}{\lambda} \leq \frac{3(a+\epsilon)^{\frac{1}{p-1}}}{2} .
$$

Hence by (2.4) equation (3.2) is uniformly parabolic in B. Moreover, it follows from Proposition 2.2 that W satisfies all of the hypotheses of Theorem 5.3.1 of [10]. Thus we conclude that there exists a constant $K=K\left(a, p, C_{2}\right)>0$ such that

$$
\left|\frac{\partial}{\partial \xi} W(0,0)\right| \leq K
$$

that is,

$$
\left|v^{(3)}(\bar{x}, \bar{t})\right| \leq \frac{K}{\lambda} .
$$

Since $(\bar{x}, \bar{t}) \in R_{\delta, \eta}$ is arbitrary, this proves the proposition.

We now turn to the barrier construction. If $\gamma \in(0, \delta)$ we will use the notation
$R_{\delta, \eta}^{\gamma}=R_{\delta, \eta}^{\gamma}\left(t_{0}\right) \equiv\left\{(x, t) \in \mathbb{R}^{2}: \zeta(t)+\gamma \leq x \leq \zeta(t)+\delta, t_{0}-\eta \leq t \leq t_{0}+\eta\right\}$.
Proposition 3.2. Let $R_{\delta_{1}, \eta_{1}}$ be the region constructed in the proof of Proposition 2.2 with

$$
\begin{equation*}
0<\delta_{1}<\frac{(p-1) a^{\frac{1}{p-1}}}{12(p-2)^{2} K} \tag{3.3}
\end{equation*}
$$

For $(x, t) \in R_{\delta_{1}, \eta_{1}}^{\gamma}$, let

$$
\begin{equation*}
\phi_{\gamma}(x, t) \equiv \frac{\alpha}{x-\zeta(t)-\gamma / 3}+\frac{\beta}{x-\zeta^{*}(t)} \tag{3.4}
\end{equation*}
$$

where ζ^{*} is given by (2.8), and α and β are positive constant less than $K / 2$. Then there exist $\delta \in\left(0, \delta_{1}\right)$ and $\eta \in\left(0, \eta_{1}\right)$ depending only on a, p and C_{2} such that

$$
L_{3}\left(\phi_{\gamma}\right) \geq 0 \quad \text { in } \quad R_{\delta, \eta}^{\gamma}
$$

for all $\gamma \in(0, \delta)$.
Proof. Choose ϵ such that

$$
\begin{equation*}
0<\epsilon<\frac{(p-1) a}{13 p-23} \tag{3.5}
\end{equation*}
$$

There exist $\delta_{2} \in\left(0, \delta_{1}\right)$ and $\eta \in\left(0, \eta_{1}\right)$ such that (2.4), (2.6) and (2.7) hold in $R_{\delta_{2}, \eta}$. Fix $\gamma \in\left(0, \delta_{2}\right)$. For $(x, t) \in R_{\delta_{2}, \eta}^{\gamma}$, we have

$$
\begin{aligned}
L_{3}\left(\phi_{3}\right)= & \frac{\alpha}{(x-\zeta-\gamma / 3)^{2}}\left\{\zeta^{\prime}-\frac{2(p-2) v v_{x}^{p-2}}{x-\zeta-\gamma / 3}+A+B\right\} \\
& +\frac{\alpha}{\left(x-\zeta^{*}\right)^{2}}\left\{\zeta^{*^{\prime}}-\frac{2(p-2) v v_{x}^{p-2}}{x-\zeta^{*}}+A+B\right\} \\
& -C \phi_{3}-D\left(\phi_{3}\right)^{2}-E v_{x}^{p-3} v_{x x}^{3}-(p-2)^{2}(p-3)(p-4) v v_{x}^{p-5} v_{x x}^{4}
\end{aligned}
$$

where A, B, C, D and E are as before.
From (2.6), together with the fact that $x-\zeta^{*} \geq x-\zeta-\gamma / 3$ we have

$$
\begin{aligned}
\frac{v}{x-\zeta^{*}} & \leq \frac{v}{x-\zeta-\gamma / 3} \leq(a+\epsilon)^{\frac{1}{p-1}} \frac{x-\zeta}{x-\zeta-\gamma / 3} \\
& \leq(a+\epsilon)^{\frac{1}{p-1}} \frac{\gamma}{\gamma-\gamma / 3}=\frac{3}{2}(a+\epsilon)^{\frac{1}{p-1}} .
\end{aligned}
$$

From (3.3), we have

$$
\begin{equation*}
D \alpha, D \beta<\frac{D K}{2}<D K \leq \frac{(p-1) a}{4}+\frac{(p-1) \epsilon}{4} . \tag{3.6}
\end{equation*}
$$

Then since $|C|$ is bounded and from (2.4) and (2.6), we have

$$
\begin{aligned}
L_{3}\left(\phi_{3}\right) \geq & \frac{\alpha}{Y^{2}}\left\{(p-1) a-(7 p-11) \epsilon-|C| Y-2 D \alpha-\bar{E} \frac{Y^{2}}{\alpha}\right\} \\
+ & \frac{\beta}{\left(x-\zeta^{*}\right)^{2}}\left\{(p-1) a-(7 p-10) \epsilon-|C|\left(x-\zeta^{*}\right)\right. \\
& \left.-2 D \beta-\bar{E} \frac{\left(x-\zeta^{*}\right)^{2}}{\beta}\right\} \\
\geq & \frac{\alpha}{Y^{2}}\left\{\frac{(p-1) a}{2}-\frac{13 p-23}{2} \epsilon-\delta_{2}\left(|C|-\bar{E} \frac{Y}{\alpha}\right)\right\} \\
+ & \frac{\beta}{\left(x-\zeta^{*}\right)^{2}}\left\{\frac{(p-1) a}{2}-\frac{13 p-21}{2} \epsilon-\delta_{2}\left(|C|-\bar{E} \frac{x-\zeta^{*}}{\beta}\right)\right\}
\end{aligned}
$$

where $Y=x-\zeta-\gamma / 3$ and $\bar{E}=|E| v_{x}^{p-3} v_{x x}^{3}$. Since ϵ satisfies (3.5) we can choose $\delta=\delta_{2}\left(\epsilon, p, a, C_{2}\right)>0$ so small that $L_{3}\left(\phi_{3}\right) \geq 0$ in $R_{\delta, \eta}^{\gamma}$.

Remark 3.1. From (3.6) the Proposition 3.2 will be true for any $\alpha, \beta \in$ ($0, K$).

Proposition 3.3. (Barrier Transformation). Let δ and η be as in Proposition 3.2 with the additional restriction that

$$
\begin{equation*}
\eta<\frac{\delta}{6 \epsilon} \tag{3.7}
\end{equation*}
$$

where ϵ is as in Proposition 3.2. Suppose that for some nonnegative constant β

$$
\begin{equation*}
v^{(3)}(x, t) \leq \frac{\alpha}{x-\zeta(t)}+\frac{\beta}{x-\zeta^{*}(t)} \quad \text { in } \quad R_{\delta, \eta} . \tag{3.8}
\end{equation*}
$$

Then $v^{(3)}$ also satisfies

$$
\begin{equation*}
v^{(3)}(x, t) \leq \frac{2 \alpha / 3}{x-\zeta(t)}+\frac{\beta+2 \alpha / 3}{x-\zeta^{*}(t)} \quad \text { in } \quad R_{\delta, \eta} . \tag{3.9}
\end{equation*}
$$

Proof. By Remark 3.1, for any $\gamma \in(0, \delta)$ since $\beta+2 \alpha / 3 \leq K$ the function

$$
\phi_{3}(x, t)=\frac{2 \alpha / 3}{x-\zeta-\gamma / 3}+\frac{\beta+2 \alpha / 3}{x-\zeta^{*}}
$$

satisfies $L_{3}\left(\phi_{3}\right) \geq 0$ in $R_{\delta, \eta}^{\gamma}$. On the other hand, on the parabolic boundary of $R_{\delta, \eta}^{\gamma}$ we have $\phi_{3} \geq v^{(3)}$. In fact, for $t=t_{1}$ and $\zeta_{1}+\gamma \leq x \leq \zeta_{1}+\delta$, with $\zeta_{1}=\zeta\left(t_{1}\right)$, we have

$$
\phi_{3}\left(x, t_{1}\right)=\frac{2 \alpha}{x-\zeta_{1}-\gamma / 3}+\frac{\beta+2 \alpha / 3}{x-\zeta_{1}}>\frac{4 \alpha / 3}{x-\zeta_{1}}+\frac{\beta}{x-\zeta_{1}}>v^{(3)}\left(x, t_{1}\right)
$$

while for $x=\zeta+\delta$ and $t_{1} \leq t \leq t_{2}$ we get, in view of (3.7),

$$
\begin{aligned}
\phi_{3}(\zeta+\delta, t) & \geq \frac{2 \alpha / 3}{\delta-\gamma / 3}+\frac{\beta}{\zeta+\delta-\zeta^{*}}+\frac{2 \alpha / 3}{\delta+6 \epsilon \eta} \\
& \geq \frac{2 \alpha / 3}{\delta}+\frac{\delta}{\zeta+\delta-\zeta^{*}}+\frac{\alpha / 3}{\delta} \geq v^{(3)}(\zeta+\delta, t) .
\end{aligned}
$$

Finally, for $x=\zeta+\gamma, t_{1} \leq t \leq t_{2}$ we have

$$
\phi_{3}(\zeta+\delta, t)=\frac{2 \alpha / 3}{\gamma-\gamma / 3}+\frac{\beta+2 \alpha / 3}{\zeta+\gamma-\zeta^{*}} \geq \frac{\alpha}{\gamma}+\frac{\beta}{\zeta+\gamma-\zeta^{*}} \geq v^{(3)}(\zeta+\gamma, t)
$$

By the comparison principle we get

$$
\phi_{3} \geq v^{(3)} \quad \text { in } \quad R_{\delta . \eta}^{\gamma}
$$

for any $\gamma \in(0, \delta)$, and (3.9) follows by letting $\gamma \downarrow 0$.
Proposition 3.4. Let $q=\left(x_{0}, t_{0}\right)$ be a point on the interface for which (2.1) holds. Then there exist constants C_{3}, δ and η depending only on p, q and u such that

$$
\left|\left(\frac{\partial}{\partial x}\right)^{3} v\right| \leq C_{3} \quad \text { in } \quad R_{\delta, \eta / 2}
$$

Proof. By Proposition 3.1 we have, by letting $\alpha=0$,

$$
v^{(3)}(x, t) \leq \frac{\beta}{x-\zeta^{*}} \leq \frac{2 \beta}{\epsilon \eta} \quad \text { in } \quad R_{\delta, \eta / 2}
$$

Even though the equation (3.1) is not linear for $v^{(3)}$, a lower bound can be obtained in a similar way.

References

[1] S. Angenent, Analyticity of the interface of the porous media equation after the waiting time, Proc. Amer. Math. Soc. 102 (1988), 329-336.
[2] D. G. Aronson and J. L. Vazquez, Eventual C^{∞}-regularity and concavity for flows in one-dimensional porous media, Arch. Rational Mech. Anal. 99 (1987),no.4, 329-348.
[3] L. A. Caffarelli and A. Friedman, Regularity of the free boundary of a gas flow in an n-dimensional porous medium, Ind. Univ. Math. J. 29 (1980), 361-381.
[4] L. A. caffarelli and N. J. Wolanski, $C^{1, \alpha}$ regularity of the free boundary for the N-dimensional porous medium equation, Comm. Pure Appl. Math. 43 (1990), 885-902.
[5] H. Choe and J. Kim, Regularity for the interfaces of evolutionary p-Laplacian functions, Siam J. Math. Anal. 26 (4) (1995), 791-819.
[6] P. Daskalopoulos and R. Hamilton, Regularity of the free boundary for the porous medium equation, J. A.M.S. 11(4) (1998), 899-965.
[7] J. R. Esteban and J. L. Vazquez, Homogeneous diffusion in R with power-like nonlinear diffusivity, Arch. Rational Mech. Anal. 103(1988) 39-80.
[8] K. Höllig and H. O. Kreiss, C^{∞}-Regularity for the porous medium equation, Math. Z. 192 (1986), 217-224.
[9] Y. Ko, $C^{1, \alpha}$ regularity of interfaces for solutopns of the parabolic p-Laplacian equation, Comm. in P. D. E., to appear.
[10] O. A. Ladyzhenskaya, N.A. Solonnikov and N.N. Uraltzeva, Linear and quasilinear equations of parabolic type, Trans. Math. Monographs, 23, Amer. Math. Soc., Providence, R. I., 1968.

Department of Mathematics
Kyonggi University
Suwon, Kyonggi-do, Korea
E-mail: ysgo@@kuic.kyonggi.ac.kr

