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ONE-DIMENSIONAL PARABOLIC p—LAPLACIAN
EQUATION

YouNnGgsaNG Ko

ABSTRACT. In this paper we establish some bounds for solutions of
parabolic one dimensional p-Laplacian equation.

1. Introduction

We consider the Cauchy problem of the form
(1.1) up = (|u$|p_2um)x in S=Rx][0,00)

where p > 2.

Equations like (1.1) were studied by many authors and arise in differ-
ent physical situations, for the detail see [7]. An important quantity of
the study of equation (1.1) is the local velocity of propagation V' (z,t),
whose expression in terms of u can be obtained by writing the equation
as a conservation law in the form

In this way we get
V= _Uz|vx|p_2>
where the nonlinear potential v(z,t) is
p—1 p=2
12 = -1,
(1.2) v o 5 U

and by direct computation v satisfies

(1.3) vy = (p— 2)v|v:,;|p_2vm + v, [P
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In [7], it was shown that V satisfies

1
Vo < 7,
~2(p—1)t
which can also be written as
1
1.4 elvp|P),, > ——————.
(1.4 (o), >~

Without loss of generality we may consider the case where ug vanishes
on R~ and is a continuous positive function, at least, on an interval (0, a)
with a > 0. Let

Plu] = {(z,t) € S : u(z,t) > 0}

be the positivity set of a solution w. Then P[u] is bounded to the left in
(x,t)-plane by the left interface curve x = ((¢)[7], where

((t) = inf{z € R: u(z,t) > 0}.

Moreover there is a time t* € [0, 00), called the waiting time, such that

C(t) =0for 0 <t <t"and ((t) <O for t > t*. It is shown [7] that t* is

finite(possibly zero) and ((t) is a nonincreasing C'! function on (¢*, 00).
For the interface of the porous medium equation

{ut =A(u™) in R" x[0,00),

u(z,0) =up on R"”

much more is known. D. G. Aronson and J. L. Vazquez [2] and indepen-
dently K. Héllig and H. O. Kreiss [8] showed the interfaces are smooth
after the waiting time. S. Angenent [1] showed that the interfaces are
real analytic after the waiting time. In dimensions n > 2, L. A. Caffarelli
and N. J. Wolanski [4] showed under some nondegeneracy conditions on
the initial data, the interface can be described by a O function when
t > T, for some T' > 0. Very recently, P. Daskalopoulos and R. Hamilton
[6] showed the interface is smooth when 0 <t < T', for some T" > 0.

On the other hand much less is known for the parabolic p-Laplacian
equation. For dimensions n > 2, H. Choe and J. Kim [5] showed, un-
der some nondegeneracy conditions on the initial data, the interface is
Lipschitz continuous and one of the authors [9] improved this result,
showing that, under the same hypotheses, the interface is a C** surface
after some time.

In [2], Aronson and Vazquez established C'* regularity of the inter-
faces by establishing the bounds for v® for k > 2, where v = —2—y!

m—1
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represents the pressure of the gas flow through a porous medium, while u
represents the density. In this paper we establish bounds for v*, k = 2, 3,
near the interface after the waiting time, where v is the solution of (1.3).

2. The Upper and Lower Bounds for v,,

Let ¢ = (xg,to) be a point on the left interface, so that xy = ((to),
v(z,ty) = 0 for all x < ((ty), and v(z,ty) > 0 for all sufficiently small
x > ((tp). We assume the left interface is moving at g. Thus to > t*.
We shall use the notation

Rs, = Rsp(to) = {(z,t) e R?: ((t) < 2 < ((#) +6,tg — < t < to + 1}

PRrROPOSITION 2.1. Let q be the point as above. Then there exist
positive constants C, § and n depending only on p, q and u such that

Ve > C In Rsy 0.

1
Proof. From (1.4) we have, v,, > 3 = D But from

Lemma 4.4 in [7] v, is bounded away and above from zero near q where
u(zx,t) > 0. u

PROPOSITION 2.2. Let ¢ = (zo,ty) be as before. Then there exist
positive constants Co, 6 and n depending only on p, g and u such that

Uz SCZ in Rd,n/Z'

Proof. From Theorem 2 and Lemma 4.4 in [7] we have

(2.1) ('(to) = —vglve[F™* = =l ™! = —a
and
(2.2) v = [va "

on the moving part of the interface {z = ((t),t > t*}. Choose ¢ > 0
such that

(2.3) (p—1)a—5pe > 4[(p —2)* + (p — 1)°J(a + e)e.

Then by Theorem 2 in [7], there exists a § = d(e) > 0 and n = n(e) €
(0,t9 — t*) such that Rs, C Plul,

(2.4) (a—€)7T <v, < (a+e)rT
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and

(2.5) VUge < (@ — €)7 Te

in Rs,. Then from (2.4) we have

(26)  (a-97(@ =) <v(@) < @@+ 97T =)
in R;, and

(2.7) —(a+e)<((t)<—(a—¢€) in [t1,ts]

where t; =ty —n and ty = to + 1. We set

(2.8) ¢*(t) = ¢(t) — bt — 1)
where b = a 4 2¢. Then clearly ((t) > (*(t) in (t1,t2]. On Plu], w = vy
satisfies
Lw) = w— (p— 200" wee — (3p — 4)|v.]P 20,0,
—[(p —2)* +2(p — 1)F|v, [ 2w?
—3(p — 2)*v|v. [P vww, — (p — 2)%(p — 3)v|v. [P Hw?
= 0.
We shall construct a barrier for w in R;,, of the form
o p
¢ x7t = + Y
R ORI
where « and (3 will be decided later.
By a direct computation we have

o / p— 2 _ p—
L(¢) = W{C — (p —2)v|v] 2$—_< + (3p — 4)|va [P0, }
5 * p—2 2 _ p—2
+W{C = (P = 2)vfval — ot (3p — v /" "va}
—[lp =22 +2(p— D[P ?¢* + G
where
G = _3(]) - 2)2vvx|vx|pi4¢¢z - (p - 2)2<p - 3)U‘U:Jc’pi4¢3

= (p— 2ol x
o I} o B 2
(ol e - IS )
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If we choose a and [ satisfying
] maX(cv 2,

then G > 0 in R;,. Now set A= L and B = Then we have

(@—¢*)? C*)
{<+ww2{< 2)o——+ (3p — ),
—2[(p—2)* + a}
FB{C = 2o+ G-

~20p -2 + 20 - 1)°)3}
(p—Da—(5p—T)e—2[(p—2)>+2(p— D’ (a+e)>1a

= ;
+B{(p—1a—(6p—6)—2((p—27+2p—1a+ 0515}

Set
0<a< (p—1)a— (bp — 7)e o
2[(p =2 +2(p—1)*J(a+ )
and
(29) ﬁ — (p - 1)a — (5]7 - 66)

2(p =202 +2(p = 1’)(a+ )5

Then from (2.3) > 0 and L(¢) > 0 in R, for all a € (0, o] and f.
Let us now compare w and ¢ on the parabolic boundary of R;,. In

view of (2.5) and (2.6) we have

1

< e(a —e)rT1

Vex S in Rgm
x p—

and in particular

U2 (C(t) +6,t) < % in  [ty, o]

By the mean value theorem and (2.7) we have for some 7 € (1, t2)
) +6—-¢(t) = o+ (a+26)(t—t1) +{(7)(t — 1)
< 54 3e(t —t1) <6+ 6en.

Now set

n = min{n(e), d(e)/6¢}.
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Since € satisfies (2.3) and [ is given by (2.9) it follows that
(p —1)a — (5p — Ge)
4l(p = 2)* +2(p — 1))(a + )16

(a+e)71
)

v

€ Z Ve O [tl, tg]
Moreover from (3.5) and (2.9)

1

g - e(a —e)rT

v— () z— ()

Let T' = {(z,t) € R? : x = ((t),t; <t < t3}. Clearly I is a compact

subset of R?. Fix a € (0, ag). For each point s € T' there is an open ball
B, centered at s such that

¢($,t1) > > /U:m:(xatl) on (C(t1)7 C(t1> + 5]

(VU (2, 1) < a(a — e)p%l in  BsN Plul.

In view of (2.6) we have

¢(x,1) >

«
> up(z,t) i B.n Plul.
:U—C_U (xz,t) in [u]

Since I' can be covered by a finite number of these balls it follows that
there is a v = y(«) € (0,0) such that

o(z,t) > w(z,t) in  Rs,.

Thus for every o € (0, ag), ¢ is a barrier for w in Rj,. By the comparison
principle for parabolic equations [10] we conclude that

! n I}
r— (1) x— ()
where [ is given by (2.9) and « € (0, o) is arbitrary. Now let a | 0 to
obtain

B2
r—C" " en

Vge(, 1) < in  Rs,,

in R. u

Vg (T, 1) <

3. Bounds for (8%)31)

In this section we find the estimates of the derivatives of the form

3
v® = (%) .
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By a direct computation we have,
(FW®) = o — (p— Qovr2l) — (A+ B — Co® — D(u®)?
— B0}, — (p—2)*(p — 3)(p — 4)vvhPvg, =0
where
A= (p—2)0P" 4+ (p — 2)200P 30y,
B = (3p— 4Pt 4+ 3(p — 2)%vvl vy,
¢ = Umvgﬂ{(?’p —4)(p-1)
+2[(p = 2)* +2(p — 1) + 6(p — 2)*(p — 3)vv; *vse + 3(p — 2)°},
D = 3(p — 2)*vvt?,
E=[p-27+20p-1)*(p-2)+(p-27°p-3)

Suppose that ¢ = (¢, t) is a point on the left interface for which (2.1)
holds. Fix € € (0,a) and take 6y = dg(e) > 0 and 1y = n(e) € (0,9 — t*)
such that Ry = Rs,,(to) C Plu] and (2.5) holds. Thus we also have
(2.6) and (2.7) in Ry. Then by rescaling and interior estimate we have

PROPOSITION 3.1. There are constants K € R*, 6 € (0,0y), and
n € (0,n9) depending only on p,q and Cy such that

K .
[w® (z,1)] < g in Rs,.
Proof. Set
26
d= min{?o,ang},
O
=" As’
and define
R(z,t) = (xt)€R2'|x—f]<éZ—)\ t<t
T ’ ' 2’ 4s -

for (z,t) € Rs,, where s = a + € and )\ =7 — ((t). Then (z,t) € Ry,
implies that R(Z,f) C Ry. Since §y > %, X\ < § and ( is nonincreasing,
we have

A
to—ﬁozto—ﬁ—g<t<t0+77<t0+770

and _ _
T4+Ct) T+

T 5 5 C(to + o)

T —

A
2
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C(to—ﬁ)+5+% < ((to — mo)-

Also observe that for each (7,¢) € Rs,, R(T,t) lies to the right of the
line x = ((t)+s(t—t). Next set x = A +7 and ¢ = A\t +¢. The function

W(ET) = 0N+ T,AT + 1) = vge(, 1)
satisfies the equation

W, = {( - 2))\v£ W, + (3p — 4)1);’—1%/}£
(3.2) +[2(p — 2)*002 vy, — (p — 2027 W
FA[(p = 2)°(p = 3)vvd ™ (V1) = (p = 2)08 2 (00)”]

in the region
1 1
BE{(§ ) ER?: |§|<— —4—<7’<O}

and |[W| < Cy in B. In view of (2.6) and (2.7)

(a—e)pr= _f“) < ”(i’ D < (a+ et —f(t)

b2

and
C(t) <) <) +s(E—1) <)+
Therefore
_ A - A
ter 2t <a-cn<Tat =2

which implies
— €)1 3(a+ e)p%l
lazgrt v _3latort
4 AT 2
Hence by (2.4) equation (3.2) is uniformly parabolic in B. Moreover,
it follows from Proposition 2.2 that W satisfies all of the hypotheses of
Theorem 5.3.1 of [10]. Thus we conclude that there exists a constant
K = K(a,p,Cy) > 0 such that
0
0,0 K;
g0 <

that is,
[0 (z,7)] <

Since (T,t) € Ry, is arbitrary, this proves the proposition. O

K
A



One-dimensional parabolic p—Laplacian equation 147

We now turn to the barrier construction. If v € (0, ) we will use the
notation

Ry, = R}, (to) = {(x,1) € R®: ((t)+7y < & < C(t)+0,to—n < t < to+n}.

PROPOSITION 3.2. Let Ry, ., be the region constructed in the proof
of Proposition 2.2 with

(p— Dars
(3.3) 0<d < 120~ 22K
For (z,t) € Réwl’ let

o p

(3.4) Oy, 1) = v —((t)—~/3 * x — (1)

where (* is given by (2.8), and o and 3 are positive constant less than
K /2. Then there exist 6 € (0,0,) andn € (0,1,) depending only on a, p
and Cy such that

L3<(Zsfy) Z 0 in ngn

for all v € (0,0).

Proof. Choose € such that
(p—Da
13p — 23

There exist 0y € (0,01) and 1 € (0,7;) such that (2.4), (2.6) and (2.7)
hold in Ry, ,. Fix v € (0,d,). For (z,t) € Rj, , we have

(3.5) 0<e<

B a _2(p—2)wb?
L‘“’“bf”)‘<ac—<—v/3>2{C t—C—/3 “”B}
a v 20p—2up?

+<as—c*>2{§ i “”B}

— O3 — D(¢s)? — Bl %0}, — (p—2)%(p — 3)(p — 4)vvl "y,

where A, B, C, D and E are as before.
From (2.6), together with the fact that x — (* > = — ( —v/3 we have

v < v _(a+€)1x——C
r—C T r—(¢—7/3 r—(C—7/3

<t Y ?W3 ;a+€)
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From (3.3), we have

DK 1 —1
(3.6) Da,D6<T<DK§<p y Jo v )

Then since |C| is bounded and from (2.4) and (2.6), we have
2

Ls(¢3) > %{(p ~1)a— (Tp—11)e — [C]Y — 2Da — E%}

g )
Tt Ve (Tp = 10)e = 0] = ¢

(x

_2D6_E(35——C*)2}

5
—1 13p — 23 -Y
= %{(p 2 - e (0T}
16} (p—1a 13p—21 —x—*
+(x_<*)2{ G e 0|0 - B )}

where Y = 2 — ¢ — /3 and E = |E[v?303_. Since € satisfies (3.5) we

xT®

can choose § = dy(€,p,a,Cy) > 0 so small that L3(¢3) > 0 in Rg,n. O

Remark 3.1. From (3.6) the Proposition 3.2 will be true for any «, 3 €
0, K).
PROPOSITION 3.3. (Barrier Transformation). Let § and n be as in
Proposition 3.2 with the additional restriction that
o
3.7 9
(3.7) <o

where € is as in Proposition 3.2. Suppose that for some nonnegative
constant 3

3) p :
(3.8) v (2,t) < paTy + Ty in  Rs,.

Then v also satisfies

2a/3 B+ 2a/3
r— () x— ()
Proof. By Remark 3.1, for any v € (0,9) since § + 2a/3 < K the

function

(3.9) v®(z,t) < Rs,.

2a/3 +B—|—2a/3
r—=C=7/3  w-(

(bg(x, t) =
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satisfies L3(¢3) > 0 in Rj,. On the other hand, on the parabolic bound-
ary of R}m we have ¢5 > v® . In fact, for t = ¢; and (; +v <z < ¢ +0,
with ¢; = ((t1), we have
2 B+2a/3  4a/3 g
x,t) = + > +
bs(@. ) x—C(—7/3 r—( r—C¢ r—(
while for z = ( + § and t; <t <ty we get, in view of (3.7),

> B (z, 1)

2a0/3 5 200/3
¢3(C+46,t) = §—v/3 (+d—C  6+6en
20/3 9 a/3 >0 (C+6,1).

>
= s T re—& s
Finally, for z = ( + v, t; <t <1y we have

2a/3 f+2a/3 _ « 6] 3
O3 +6.1) = e (e
) B e P T e 2 )
By the comparison principle we get
b3 > 0P in R}n
for any v € (0,6), and (3.9) follows by letting v | 0. O

PROPOSITION 3.4. Let ¢ = (xo,t9) be a point on the interface for
which (2.1) holds. Then there exist constants Cs, 6 and n depending
only on p, q and u such that

() *

Proof. By Proposition 3.1 we have, by letting o = 0,

SOg in R5777/2'

g 26 .
U(3)(gj’t) S T C* S a m R(;,n/g.
Even though the equation (3.1) is not linear for v(®, a lower bound can
be obtained in a similar way:. O
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