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ONE-DIMENSIONAL PARABOLIC p−LAPLACIAN

EQUATION

Youngsang Ko

Abstract. In this paper we establish some bounds for solutions of
parabolic one dimensional p-Laplacian equation.

1. Introduction

We consider the Cauchy problem of the form

(1.1) ut =
(
|ux|p−2ux

)
x

in S = R× [0,∞)

where p > 2.
Equations like (1.1) were studied by many authors and arise in differ-

ent physical situations, for the detail see [7]. An important quantity of
the study of equation (1.1) is the local velocity of propagation V (x, t),
whose expression in terms of u can be obtained by writing the equation
as a conservation law in the form

ut + (uV )x = 0.

In this way we get

V = −vx|vx|p−2,

where the nonlinear potential v(x, t) is

(1.2) v =
p− 1

p− 2
u

p−2
p−1 .

and by direct computation v satisfies

(1.3) vt = (p− 2)v|vx|p−2vxx + |vx|p.
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In [7], it was shown that V satisfies

Vx ≤
1

2(p− 1)t
,

which can also be written as

(1.4) (vx|vx|p−2)x ≥ − 1

2(p− 1)t
.

Without loss of generality we may consider the case where u0 vanishes
on R− and is a continuous positive function, at least, on an interval (0, a)
with a > 0. Let

P [u] = {(x, t) ∈ S : u(x, t) > 0}
be the positivity set of a solution u. Then P [u] is bounded to the left in
(x, t)-plane by the left interface curve x = ζ(t)[7], where

ζ(t) = inf{x ∈ R : u(x, t) > 0}.
Moreover there is a time t∗ ∈ [0,∞), called the waiting time, such that
ζ(t) = 0 for 0 ≤ t ≤ t∗ and ζ(t) < 0 for t > t∗. It is shown [7] that t∗ is
finite(possibly zero) and ζ(t) is a nonincreasing C1 function on (t∗,∞).

For the interface of the porous medium equation{
ut = 4(um) in Rn × [0,∞),

u(x, 0) = u0 on Rn

much more is known. D. G. Aronson and J. L. Vazquez [2] and indepen-
dently K. Höllig and H. O. Kreiss [8] showed the interfaces are smooth
after the waiting time. S. Angenent [1] showed that the interfaces are
real analytic after the waiting time. In dimensions n > 2, L. A. Caffarelli
and N. J. Wolanski [4] showed under some nondegeneracy conditions on
the initial data, the interface can be described by a C1,α function when
t > T , for some T > 0. Very recently, P. Daskalopoulos and R. Hamilton
[6] showed the interface is smooth when 0 < t < T , for some T > 0.

On the other hand much less is known for the parabolic p-Laplacian
equation. For dimensions n > 2, H. Choe and J. Kim [5] showed, un-
der some nondegeneracy conditions on the initial data, the interface is
Lipschitz continuous and one of the authors [9] improved this result,
showing that, under the same hypotheses, the interface is a C1,α surface
after some time.

In [2], Aronson and Vazquez established C∞ regularity of the inter-
faces by establishing the bounds for v(k) for k ≥ 2, where v = m

m−1
um−1
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represents the pressure of the gas flow through a porous medium, while u
represents the density. In this paper we establish bounds for vk, k = 2, 3,
near the interface after the waiting time, where v is the solution of (1.3).

2. The Upper and Lower Bounds for vxx

Let q = (x0, t0) be a point on the left interface, so that x0 = ζ(t0),
v(x, t0) = 0 for all x ≤ ζ(t0), and v(x, t0) > 0 for all sufficiently small
x > ζ(t0). We assume the left interface is moving at q. Thus t0 > t∗.
We shall use the notation

Rδ,η = Rδ,η(t0) = {(x, t) ∈ R2 : ζ(t) < x ≤ ζ(t) + δ, t0 − η ≤ t ≤ t0 + η}.

Proposition 2.1. Let q be the point as above. Then there exist
positive constants C, δ and η depending only on p, q and u such that

vxx ≥ C in Rδ,η/2.

Proof. From (1.4) we have, vxx ≥ − 1

2(p− 1)2|vx|p−2t
. But from

Lemma 4.4 in [7] vx is bounded away and above from zero near q where
u(x, t) > 0.

Proposition 2.2. Let q = (x0, t0) be as before. Then there exist
positive constants C2, δ and η depending only on p, q and u such that

vxx ≤ C2 in Rδ,η/2.

Proof. From Theorem 2 and Lemma 4.4 in [7] we have

(2.1) ζ ′(t0) = −vx|vx|p−2 = −vp−1
x = −a

and

(2.2) vt = |vx|p

on the moving part of the interface {x = ζ(t), t > t∗}. Choose ε > 0
such that

(2.3) (p− 1)a− 5pε ≥ 4[(p− 2)2 + (p− 1)2](a + ε)ε.

Then by Theorem 2 in [7], there exists a δ = δ(ε) > 0 and η = η(ε) ∈
(0, t0 − t∗) such that Rδ,η ⊂ P [u],

(2.4) (a− ε)
1

p−1 < vx < (a + ε)
1

p−1
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and

(2.5) vvxx ≤ (a− ε)
2

p−1 ε

in Rδ,η. Then from (2.4) we have

(2.6) (a− ε)
1

p−1 (x− ζ) < v(x, t) < (a + ε)
1

p−1 (x− ζ)

in Rδ,η and

(2.7) −(a + ε) < ζ ′(t) < −(a− ε) in [t1, t2]

where t1 = t0 − η and t2 = t0 + η. We set

(2.8) ζ∗(t) = ζ(t1)− b(t− t1)

where b = a + 2ε. Then clearly ζ(t) > ζ∗(t) in (t1, t2]. On P [u], w ≡ vxx

satisfies

L(w) = wt − (p− 2)v|vx|p−2wxx − (3p− 4)|vx|p−2vxwx

−[(p− 2)2 + 2(p− 1)2]|vx|p−2w2

−3(p− 2)2v|vx|p−4vxwwx − (p− 2)2(p− 3)v|vx|p−4w3

= 0.

We shall construct a barrier for w in Rδ,η of the form

φ(x, t) ≡ α

x− ζ(t)
+

β

x− ζ∗(t)
,

where α and β will be decided later.
By a direct computation we have

L(φ) =
α

(x− ζ)2
{ζ ′ − (p− 2)v|vx|p−2 2

x− ζ
+ (3p− 4)|vx|p−2vx}

+
β

(x− ζ∗)2
{ζ∗′ − (p− 2)v|vx|p−2 2

x− ζ∗
+ (3p− 4)|vx|p−2vx}

−[(p− 2)2 + 2(p− 1)2]|vx|p−2φ2 + Ḡ

where

Ḡ = −3(p− 2)2vvx|vx|p−4φφx − (p− 2)2(p− 3)v|vx|p−4φ3

= (p− 2)2v|vx|p−4 ×

φ

(
3vx[

α

(x− ζ)2
+

β

(x− ζ∗)2
]− (p− 3)[

α

x− ζ
+

β

x− ζ∗
]2

)
.
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If we choose α and β satisfying

vx ≥ |p− 3|max(α, β),

then Ḡ ≥ 0 in Rδ,η. Now set Ā = α
(x−ζ)2

and B̄ = β
(x−ζ∗)2

. Then we have

L(φ) ≥ Ā
{

ζ ′ + |vx|p−2{−(p− 2)v
2

x− ζ
+ (3p− 4)vx

− 2[(p− 2)2 + 2(p− 1)2]α}
}

+ B̄
{

ζ∗
′
+ |vx|p−2{−(p− 2)v

2

x− ζ∗
+ (3p− 4)vx

− 2[(p− 2)2 + 2(p− 1)2]β}
}

≥ Ā
{

(p− 1)a− (5p− 7)ε− 2[(p− 2)2 + 2(p− 1)2](a + ε)
p−2
p−1 α

}
+ B̄

{
(p− 1)a− (5p− 6)ε− 2[(p− 2)2 + 2(p− 1)2](a + ε)

p−2
p−1 β

}
.

Set

0 < α ≤ (p− 1)a− (5p− 7)ε

2[(p− 2)2 + 2(p− 1)2](a + ε)
p−2
p−1

= α0

and

(2.9) β =
(p− 1)a− (5p− 6ε)

2[(p− 2)2 + 2(p− 1)2](a + ε)
p−2
p−1

.

Then from (2.3) β > 0 and L(φ) ≥ 0 in Rδ,η for all α ∈ (0, α0] and β.
Let us now compare w and φ on the parabolic boundary of Rδ,η. In

view of (2.5) and (2.6) we have

vxx ≤
ε(a− ε)

1
p−1

x− ζ
in Rδ,η

and in particular

vxx(ζ(t) + δ, t) ≤ ε(a− ε)
1

p−1

δ
in [t1, t2].

By the mean value theorem and (2.7) we have for some τ ∈ (t1, t2)

ζ(t) + δ − ζ∗(t) = δ + (a + 2ε)(t− t1) + ζ ′(τ)(t− t1)

≤ δ + 3ε(t− t1) ≤ δ + 6εη.

Now set
η ≡ min{η(ε), δ(ε)/6ε}.
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Since ε satisfies (2.3) and β is given by (2.9) it follows that

φ(ζ + δ, t) ≥ β

2δ
≥ (p− 1)a− (5p− 6ε)

4[(p− 2)2 + 2(p− 1)2](a + ε)
p−2
p−1 δ

≥ (a + ε)
1

p−1

δ
ε ≥ vxx on [t1, t2]

Moreover from (3.5) and (2.9)

φ(x, t1) ≥
β

x− ζ(t1)
>

ε(a− ε)
1

p−1

x− ζ(t1)
> vxx(x, t1) on (ζ(t1), ζ(t1) + δ].

Let Γ = {(x, t) ∈ R2 : x = ζ(t), t1 ≤ t ≤ t2}. Clearly Γ is a compact
subset of R2. Fix α ∈ (0, α0). For each point s ∈ Γ there is an open ball
Bs centered at s such that

(vvxx)(x, t) ≤ α(a− ε)
1

p−1 in Bs ∩ P [u].

In view of (2.6) we have

φ(x, t) ≥ α

x− ζ
≥ vxx(x, t) in Bs ∩ P [u].

Since Γ can be covered by a finite number of these balls it follows that
there is a γ = γ(α) ∈ (0, δ) such that

φ(x, t) ≥ w(x, t) in Rδ,η.

Thus for every α ∈ (0, α0), φ is a barrier for w in Rδ,η. By the comparison
principle for parabolic equations [10] we conclude that

vxx(x, t) ≤ α

x− ζ(t)
+

β

x− ζ∗(t)
in Rδ,η,

where β is given by (2.9) and α ∈ (0, α0) is arbitrary. Now let α ↓ 0 to
obtain

vxx(x, t) ≤ β

x− ζ∗
≤ 2β

εη
in R.

3. Bounds for
(

∂
∂x

)3
v

In this section we find the estimates of the derivatives of the form

v(3) ≡
(

∂

∂x

)3

v.
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By a direct computation we have,

L3(v
(3)) = v

(3)
t − (p− 2)vvp−2

x v
(3)
xx − (A + B)v

(3)
x − Cv(3) −D(v(3))2(3.1)

−Evp−3
x v3

xx − (p− 2)2(p− 3)(p− 4)vvp−5
x v4

xx = 0

where

A = (p− 2)vp−1
x + (p− 2)2vvp−3

x vxx,

B = (3p− 4)vp−1
x + 3(p− 2)2vvp−3

x vxx,

C = vxxv
p−2
x {(3p− 4)(p− 1)

+ 2[(p− 2)2 + 2(p− 1)2] + 6(p− 2)2(p− 3)vv−2
x vxx + 3(p− 2)2},

D = 3(p− 2)2vvp−3
x ,

E = [(p− 2)2 + 2(p− 1)2](p− 2) + (p− 2)2(p− 3).

Suppose that q = (x0, t0) is a point on the left interface for which (2.1)
holds. Fix ε ∈ (0, a) and take δ0 = δ0(ε) > 0 and η0 = η(ε) ∈ (0, t0 − t∗)
such that R0 ≡ Rδ0,η0(t0) ⊂ P [u] and (2.5) holds. Thus we also have
(2.6) and (2.7) in R0. Then by rescaling and interior estimate we have

Proposition 3.1. There are constants K ∈ R+, δ ∈ (0, δ0), and
η ∈ (0, η0) depending only on p,q and C2 such that

|v(3)(x, t)| ≤ K

x− ζ(t)
in Rδ,η.

Proof. Set

δ = min{2δ0

3
, 2sη0},

η = η0 −
δ

4s
,

and define

R(x, t) ≡
{

(x, t) ∈ R2 : |x− x| < λ

2
, t− λ

4s
< t ≤ t

}
for (x, t) ∈ Rδ,η, where s = a + ε and λ = x − ζ(t). Then (x, t) ∈ Rδ,η

implies that R(x, t) ⊂ R0. Since δ0 ≥ 3δ
2
, λ < δ and ζ is nonincreasing,

we have

t0 − η0 = t0 − η − λ

4s
< t < t0 + η < t0 + η0

and

x− λ

2
= x− x + ζ(t)

2
=

x + ζ(t)

2
> ζ(t0 + η0)
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ζ(t0 − η) + δ +
λ

2
< ζ(t0 − η0).

Also observe that for each (x, t) ∈ Rδ,η, R(x, t) lies to the right of the
line x = ζ(t)+s(t− t). Next set x = λξ+x and t = λτ + t. The function

W (ξ, τ) ≡ vxx(λξ + x, λτ + t) = vxx(x, t)

satisfies the equation

Wτ =
{

(p− 2)
v

λ
vp−2

x Wξ + (3p− 4)vp−1
x W

}
ξ

+[2(p− 2)2vvp−3
x vxx − (p− 2)vp−1

x ]Wξ(3.2)

+λ[(p− 2)2(p− 3)vvp−4
x (vxx)

3 − (p− 2)vp−2
x (vxx)

2]

in the region

B ≡
{

(ξ, τ) ∈ R2 : |ξ| ≤ 1

2
,− 1

4s
< τ ≤ 0

}
,

and |W | ≤ C2 in B. In view of (2.6) and (2.7)

(a− ε)
1

p−1
x− ζ(t)

λ
≤ v(x, t)

λ
≤ (a + ε)

1
p−1

x− ζ(t)

λ
and

ζ(t) ≤ ζ(t) ≤ ζ(t) + s(t− t) ≤ ζ(t) +
λ

4
.

Therefore
λ

4
= x− λ

2
− ζ(t)− λ

4
≤ x− ζ(t) ≤ x +

λ

2
− ζ(t) =

3λ

2
which implies

(a− ε)
1

p−1

4
≤ v

λ
≤ 3(a + ε)

1
p−1

2
.

Hence by (2.4) equation (3.2) is uniformly parabolic in B. Moreover,
it follows from Proposition 2.2 that W satisfies all of the hypotheses of
Theorem 5.3.1 of [10]. Thus we conclude that there exists a constant
K = K(a, p, C2) > 0 such that∣∣∣∣ ∂

∂ξ
W (0, 0)

∣∣∣∣ ≤ K;

that is,

|v(3)(x, t)| ≤ K

λ
.

Since (x, t) ∈ Rδ,η is arbitrary, this proves the proposition.
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We now turn to the barrier construction. If γ ∈ (0, δ) we will use the
notation

Rγ
δ,η = Rγ

δ,η(t0) ≡ {(x, t) ∈ R2 : ζ(t)+γ ≤ x ≤ ζ(t)+δ, t0−η ≤ t ≤ t0+η}.

Proposition 3.2. Let Rδ1,η1 be the region constructed in the proof
of Proposition 2.2 with

(3.3) 0 < δ1 <
(p− 1)a

1
p−1

12(p− 2)2K
.

For (x, t) ∈ Rγ
δ1,η1

, let

(3.4) φγ(x, t) ≡ α

x− ζ(t)− γ/3
+

β

x− ζ∗(t)

where ζ∗ is given by (2.8), and α and β are positive constant less than
K/2. Then there exist δ ∈ (0, δ1) and η ∈ (0, η1) depending only on a, p
and C2 such that

L3(φγ) ≥ 0 in Rγ
δ,η

for all γ ∈ (0, δ).

Proof. Choose ε such that

(3.5) 0 < ε <
(p− 1)a

13p− 23
.

There exist δ2 ∈ (0, δ1) and η ∈ (0, η1) such that (2.4), (2.6) and (2.7)
hold in Rδ2,η. Fix γ ∈ (0, δ2). For (x, t) ∈ Rγ

δ2,η, we have

L3(φ3) =
α

(x− ζ − γ/3)2

{
ζ
′ − 2(p− 2)vvp−2

x

x− ζ − γ/3
+ A + B

}
+

α

(x− ζ∗)2

{
ζ∗

′ − 2(p− 2)vvp−2
x

x− ζ∗
+ A + B

}
− Cφ3 −D(φ3)

2 − Evp−3
x v3

xx − (p− 2)2(p− 3)(p− 4)vvp−5
x v4

xx

where A, B, C, D and E are as before.
From (2.6), together with the fact that x− ζ∗ ≥ x− ζ − γ/3 we have

v

x− ζ∗
≤ v

x− ζ − γ/3
≤ (a + ε)

1
p−1

x− ζ

x− ζ − γ/3

≤ (a + ε)
1

p−1
γ

γ − γ/3
=

3

2
(a + ε)

1
p−1 .
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From (3.3), we have

(3.6) Dα, Dβ <
DK

2
< DK ≤ (p− 1)a

4
+

(p− 1)ε

4
.

Then since |C| is bounded and from (2.4) and (2.6), we have

L3(φ3) ≥
α

Y 2

{
(p− 1)a− (7p− 11)ε− |C|Y − 2Dα− E

Y 2

α

}
+

β

(x− ζ∗)2

{
(p− 1)a− (7p− 10)ε− |C|(x− ζ∗)

− 2Dβ − E
(x− ζ∗)2

β

}
≥ α

Y 2

{(p− 1)a

2
− 13p− 23

2
ε− δ2(|C| − E

Y

α
)
}

+
β

(x− ζ∗)2

{(p− 1)a

2
− 13p− 21

2
ε− δ2(|C| − E

x− ζ∗

β
)
}

where Y = x − ζ − γ/3 and E = |E|vp−3
x v3

xx. Since ε satisfies (3.5) we
can choose δ = δ2(ε, p, a, C2) > 0 so small that L3(φ3) ≥ 0 in Rγ

δ,η.

Remark 3.1. From (3.6) the Proposition 3.2 will be true for any α, β ∈
(0, K).

Proposition 3.3. (Barrier Transformation). Let δ and η be as in
Proposition 3.2 with the additional restriction that

(3.7) η <
δ

6ε
,

where ε is as in Proposition 3.2. Suppose that for some nonnegative
constant β

(3.8) v(3)(x, t) ≤ α

x− ζ(t)
+

β

x− ζ∗(t)
in Rδ,η.

Then v(3) also satisfies

(3.9) v(3)(x, t) ≤ 2α/3

x− ζ(t)
+

β + 2α/3

x− ζ∗(t)
in Rδ,η.

Proof. By Remark 3.1, for any γ ∈ (0, δ) since β + 2α/3 ≤ K the
function

φ3(x, t) =
2α/3

x− ζ − γ/3
+

β + 2α/3

x− ζ∗
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satisfies L3(φ3) ≥ 0 in Rγ
δ,η. On the other hand, on the parabolic bound-

ary of Rγ
δ,η we have φ3 ≥ v(3). In fact, for t = t1 and ζ1 + γ ≤ x ≤ ζ1 + δ,

with ζ1 = ζ(t1), we have

φ3(x, t1) =
2α

x− ζ1 − γ/3
+

β + 2α/3

x− ζ1

>
4α/3

x− ζ1

+
β

x− ζ1

> v(3)(x, t1)

while for x = ζ + δ and t1 ≤ t ≤ t2 we get, in view of (3.7),

φ3(ζ + δ, t) ≥ 2α/3

δ − γ/3
+

β

ζ + δ − ζ∗
+

2α/3

δ + 6εη

≥ 2α/3

δ
+

δ

ζ + δ − ζ∗
+

α/3

δ
≥ v(3)(ζ + δ, t).

Finally, for x = ζ + γ, t1 ≤ t ≤ t2 we have

φ3(ζ + δ, t) =
2α/3

γ − γ/3
+

β + 2α/3

ζ + γ − ζ∗
≥ α

γ
+

β

ζ + γ − ζ∗
≥ v(3)(ζ + γ, t).

By the comparison principle we get

φ3 ≥ v(3) in Rγ
δ.η

for any γ ∈ (0, δ), and (3.9) follows by letting γ ↓ 0.

Proposition 3.4. Let q = (x0, t0) be a point on the interface for
which (2.1) holds. Then there exist constants C3, δ and η depending
only on p, q and u such that∣∣∣∣∣

(
∂

∂x

)3

v

∣∣∣∣∣ ≤ C3 in Rδ,η/2.

Proof. By Proposition 3.1 we have, by letting α = 0,

v(3)(x, t) ≤ β

x− ζ∗
≤ 2β

εη
in Rδ,η/2.

Even though the equation (3.1) is not linear for v(3), a lower bound can
be obtained in a similar way.
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