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GROUP ACTIONS ON KAC ALGEBRAS

JUNG RYE LEE

ABsTrACT. For a group action o on a Kac algebra K with the
crossed product Kac algebra K xo G, we will show that w4 (K) is
a sub-Kac algebra of K xo G. We will also investigate the intrin-
sic group G(K) of K and get a group action § on a symmetric
Kac algebra K, (G(K)) with the crossed product sub-Kac algebra
Ks (G(K)) x5 G of K x4 G.

1. Introduction

Kac algebra theory is one of the most important topics in recent
operator algebra theory and much effort has been made to develope it
([E], [EN], [ES2], [KP], [NT], [Sc], [TT], [W]). As is well known, typical
examples of von Neumann algebra come from group actions. So it is
interesting to consider group actions on Kac algebras ([DeC1], [ES1],
[N], [Y2]). Of course, outer actions on von Neumann algebras are very
useful. But the action in this paper is different from outer actions and
gives examples of Kac algebras.

Furthermore, since the intrinsic group of a Kac algebra consists of
“group-like” elements of the given Kac algebra, it can be considered as
a natural kind of invariant attached to each Kac algebra. So to study
the intrinsic group is one of the important things in the theory of Kac
algebras ([DeC2], [Y1]).

For a locally compact group G and a G-action o on a Kac algebra
K = (M, T, &, ¢), we have the crossed product Kac algebra Kx, G and
an inclusion 74 (M) C M x4 G of von Neumann alebras can be made
into an inclusion 74 (K) C K x4 G of Kac algebras. Moreover, we have
that 7, (G(K)) is a subgroup of the intrinsic group G(Kx, G) and there
exists a G-action 8 on a maximal abelian sub-Kac algebra K (G(K)) of
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‘K with the crossed product sub-Kac algebra K (G(K)) x5 G of Kx4 G.
Finally, we will give some properties and examples of group actions on
Kac algebras.

2. Preliminaries

In this section, we introduce notations and briefly review fundamen-
tal results which will be necessary for our discussion.

In order to fix notations, we first describe the notion of Kac algebras
defined by [ES2]. For the general theory of Kac algebras, we refer to
Enock and Schwartz [ES2].

A triplet (M, T', k) consisting of a von Neumann algebra M, an
isomorphism I' : M — M ® M satisfying coproduct condition (I' ® i)o
I = (i®I) ol and an involutive antiisomorphism & : M — M with
col'ok = (k®k) ol is called an involutive Hopf-von Neumann algebra
H, where ¢ is a flip.

DEFINITION 2.1. An involutive Hopf-von Neumann algebra H =
(M, T, k) with a Haar weight ¢ is called a Kac algebra and denoted
by K= (M, T, &, ).

In this case, M is represented standardly on the Hilbert space H,
obtained from ¢.

For two Kac algebras K; = (M;, T, ki, i), (i = 1,2), we shall say
that K; and K, are isomorphic (i.e. K; = Kj) if there exist an H-
isomorphism u : (My,Ty,k1) — (M3,T'3,k2) and k > 0 such that
g ou = kip;. Note that an H-isomorphism u is a unital normal iso-
morphism from M; to M, such that Tou = (u ® u)['1 and kou = uk;.

For every Kac algebra K = (M, T', &, ¢), there canonically exists
its dual Kac algebra K = (M ; I, &, ) and whose underlying von
Neumann algebra M is also represented standardly on the same space
H,. Note that the dual Kac algebra of K is isomorphic to K.

Now we consider a von Neumann subalgebra My of M such that:

(1) T(Myp) C My ® Mp.
(2) w(Mp) = Mp.
(3) the restriction @y = ¢| M 182 semi-finite weight.

We shall denote by Kg, the quadruple (Mg, T'o, Ko, @o) where I'g and
ko are respectively the restriction of I and k on M. Then it is well



Group actions on Kac algebras 105

known that Kg is a Kac algebra, called a sub-Kac algebra of K.

The intrinsic group G(K) of a Kac algebra K consists of all invertible
elements z € M such that I'(z) = 2 ® z. We know that G(K) is a
closed subgroup of the unitary group of M, when equipped with the
weak topology.

The basic examples of Kac algebras that we shall need, are ones
associated to locally compact groups. From now on, G denotes a locally
compact group G with a left Haar measure ds. The left regular unitary
representation A of G on L*(Q) is defined by (A(g)¢)(h) = £(gh), (€ €
L*(@),g,h € G). Then the group von Neumann algebra L(G) is defined
by {A(g)lg € G}".

As is well known, the crossed product M x,G of M by G relative to a
G-action a is the von Neumann algebra {7 (M)U{p(g)},ec}”, where p
is the right regular representation of G on L?(G) and a normal injective
homomorphism 74 : M — M ® L™(G) is defined by (mq(z)€)(9) =
ag ' (2)4(g), (€ € L*(G,H), g € G) with p(g)ma(z)p(9)” = ma(ag()).

We associate two concrete Kac algebras acting on L?(G). One is
the abelian Kac algebra K, (G) = (L*°(G), L4, Ka, Pa), Where

To(f)(5,8) = £(st), ka(F)(s) = F(5™Y), walf) = [G £(s)ds.

The other is the symmetric Kac algebra K,;(G) = (L(G), s, ks, ©s),
where

La(A(s)) = A(s) ® As), ks(A(s))=A(s71),

the weight ¢, is the so-called Plancherel weight of G. Note that K, (G)
and K, (G) are dual to each other.

The group of all continuous characters on G, denoted by x(G) is
a topological group with the topology of compact convergence. The
intrinsic group G(K,(G)) of a Kac algebra K,(G) can be identified
with x(G) and G(K,(G)) = G (see [DeC2]).

Now consider group actions on Kac algebras. Given a Kac algebra
K = (M,I,k, ) and G-action a on M, we recall the definition of a
G-action on a Kac algebra K (see Definition 2.7 in [DeCl]).

DEFINITION 2.2. Let K = (M, I', K, ¢) be a Kac algebra and G a
locally compact group. A o-weakly continuous action a of G on M is
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‘said to be a G-action on K if it satisfies the following:

Foay=(0g®ay) o, koayz=ag0k, (g9€q).

It was shown in [DeCl] that for a G-action a on K = (M, T, &, ¢),
M %, G can be made into a Kac algebra K x, G = (M X, G.T. R ?),
called crossed product Kac algebra by a locally compact group, satis-
fying T'(mo(z)) = (7o ® 7o) (z) and k(ma{z)) = 74 0 k(z), (z € M).

3. Group Actions on Kac algebras and crossed product Kac
algebras

In this section, we consider a G-action o on a Kac algebra K =
(M,T, &, ) with the crossed product Kac algebra K x, G = (M X,
G,T,k, ). Note that we get an inclusion (M) C M x, G of von
Neumann algebras.

The following proposition tells that we can get an inclusion of Kac
algebras K = m,(K) C K x4 G. In order to do this, we need that
for two Kac algebras K; = (M;, T, ki, i), (¢ = 1,2), if there exists a
unital normal isomorphism u : My — M such that I'pu = (u ® u)I'y
then by 5.5.6 in [ES2], u is an H-isomorphism from (Mj,T'1,%1) to
(M3,T2, k). From 2.7.9 in [ES2] we get that there exists &k > 0 such
that 2 ou = k¢q, and so two Kac algebras K; and K, are isomorphic.

ProprosiTiON 3.1. Let o be a G-action on a Kac algebra K =
(M,T',k,¢). Then (M) can be made into a sub-Kac algebra m,(K)
of K x4 G.

Proof. From the properties of ' and &, we see that I'(m(M)) C
To(M) ® mo(M) and R(mo(M)) = wo(M). It is well known that the
restriction of a Haar weight ¢ on 7, (M) is a semi-finite weight. Thus,
7o (K), whose underlying von Neumann algebra is 7, (M), becomes a
sub-Kac algebra of K %, G.

Note that we can identify M and 7, (M), which gives K 2 7, (K),
as in the above statement. ad

We give here a nice behavior of automorphisms ag,g9 € G of M,
where o is a G-action on K.
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LeEMMA 3.2. Let a be a G-action on a Kac algebraK = (M, T, k, ¢).
Then for any g € G, we have ag(G(K)) = G(K), where G(K) is the
intrinsic group of K.

Proof. For any g € G and z € G(K), since « is a G-action on K, we
have

L(ay(z)) = (g ® ag)(T'(z)) = (ag ® o) (z ® ) = ag(x) ® ag(z),
which implies oy (2) € G(K) and so ay(G(K)) C G(K).

On the other hand, the fact of a;' = ay-1,(g € G) gives G(K) C
a4(G(K)), which completes the proof. O

LEMMA 3.3. Let Ky = (Mo, T, Ko, o) be a sub-Kac algebra
of K = (M,T,k,¢) and a a G-action on K. If the restriction 3, of
@y, (g € G) on M is an automorphism of My then 3 is a G-action on Ko
such that the crossed product Kac algebra Ky xg G whose underlying
von Neumann algebra is My xg G, is a sub-Kac algebra of K x4 G.

Proof. Since B, = ag|nm,, (9 € G) is an automorphism of My and «
is a G-action on M, clearly, (3 is a G-action on M.

For any g € G and = € My, the facts of I'(z) = To(z) € My ®
My, k(z) = ko(z) € My and B4(z) = ay(z) give that

Lo(By(x)) = T'(ag(z)) = (ag ® ag)(I'(x)) = (B ® B4)(To(2))
and
ko(By(z)) = K(ag(x)) = ag(k(z)) = By(ro(2)),
which implies that § is a G-action on a Kac algebra K.

It is straightforward to show that Ky xg G is a sub-Kac algebra of
Kx,G. O

Now we are ready to prove that there exists a G-action on the sym-
metric Kac algebra K, (G(K)) with the crossed product sub-Kac alge-
bra of K x4 G .

THEOREM 3.4. For a G-action o on a Kac algebraK = (M, T, &, ¢),
we have the following:
(1) mo(G(K)) is a subgroup of G(K x4 G).
(2) There exists a G-action 8 on a maximal abelian sub-Kac al-
gebra K,(G(K)) of K and the crossed product Kac algebra
K, (G(K)) xg G is a sub-Kac algebra of K x4 G .
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Proof.

(1) For any z in G(K), we have I'(my(z)) = (7a ® mo)T(z) =
(o @ T )(z @ T) = () @ mo(z), which implies 7, (G(K)) C
G(K x4 G). Since G(K) is a subgroup of the unitary group
of M and 7, is a homomorphism, 7,(G(K)) is a subgroup of
G(K x4 G).

(2) By Lemma 3.2, ay(G(K)) = G(K),g € G and K;(G(K)) is a
maximal abelian sub-Kac algebra of K (see [ES2]). For any g €
G and z € G(K)), if we define G, by B4(A(z)) = A(agy(z)) then
it is straightforward to show that 3 is a G-action on L(G(K)).
Thus by Lemma 3.3, 3 is a G-action on a Kac algebra K, (G(K))
and KK; (G(K)) xg G is a sub-Kac algebra of K x, G . O

Among group actions on von Neumann algebras, outer actions are
important. But we note here that actions on Kac algebras are different
from outer actions. In the following remark, we will give an example
of an outer action which is not a group action on a Kac algebra.

REMARK 3.5. Consider a discrete ICC-group G and its character
group x(G). Let a be an action of x(G) on a factor L(G) defined
by ay(A(g)) = x(9)A(g). We know that o is an outer x(G)-action on
L(G).

But for a nontrivial character x, if we take go € G with x(go) # 1
then we have I's (ay (A(90))) = I's(x(90)A(g0)) = x(g0)A(90) ®A(g0) and

(ax ® ax)Ts(A(90)) = (ax ® ay)(A(go) ® A(go)) = x(90)*X(g0) ® A(g0),
which implies that

L5 (o (A(90))) # (ax ® ay)T's(A(g0))-

Thus « is not x(G)-action on a Kac algebra K, (G).

Now we consider an investigation of the associated action & on M
of a G-action a on M.

It was shown in [DeC1] that the canonical implementation u, of ay
also implements an automorphism &, of M for any g € G. This &, so-
called associated action of G on M (see Definition 2.9 in [DeC1]), allows
us to define a normal injective homomorphism 74 : M — M @ L°(G)
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zind we get a G-action & on K with the crossed product Kac algebra
K x4 G (see [DeCl]). Here we give examples of group actions on Kac
algebras.

EXAMPLE 3.6. For two locally compact groups K and H, let «
be a K-action on L(H) satisfying that for any k € K and h € H,
ag(A(h)) = A(R') for some h' € H. Then K-actions a and & are
K-actions on K (H) and K, (H), respectively, with the same unitary
implementation.

From Theorem 3.4, when o is an G-action on K we note that
To(G(K)) is a subgroup of G(K x, G). Moreover, there exists a G-
action on a group G(K) which induces G-action 8 on a Kac algebra
K, (G(K)) with K, (G(K)) xg G C K x4 G.

REMARK 3.7. Let G be a semi-direct product H xg K of locally
compact groups H and K. It is well known that there exists K-actions

a and & on L(H) and L*°(H), respectively, induced by 3 (see [DeC1]).
(1) We know that L(H) %, K = L(G) and G(K;(H)) = H gives
K, (H) %o K = K, (G). :
(2) We have L*(H) ® L>®(K) = L*(G). But neither K,(H) ®
Ka (K) nor K, (H) x4 K is isomorphic to K, (G).
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