The Characteristics of Titanium Disilicide Films following Manufacturing Methods

제조 방법에 따른 Titanium Disilicide 막의 특성

  • Mo, Man-Jin (Department of Chemical Engineering, Dan-kook University) ;
  • Jeon, Bup-Ju (Department of Chemical Engineering, Dan-kook University) ;
  • Jung, Il-Hyun (Department of Chemical Engineering, Dan-kook University)
  • Received : 1998.08.21
  • Accepted : 1999.03.11
  • Published : 1999.05.10

Abstract

The films annealed after physical deposition of titanium and chemical deposition of amorphous silicon by plasma were formed Si-rich titanium silicide with a good quality of crystallinity and had the various lattice structures due to orientation of lattices for epitaxy growth during annealing process. Band gap of the titanium silicide had 1.14~1.165 eV and the films annealed after chemical deposition of a-Si:H by plasma were influenced by a-Si and the dangling bond offered by desorption of hydrogen. Urbach tail ($E_0$) of the films annealed after physical deposition of Ti was nearly constant within a range of 0.045~0.05 eV, and the number of defect in films annealed after chemical deposition of a-Si:H by plasma was about 2~3 times more than that in annealed Ti/Si films.

티타늄을 물리증착시킨 후 열처리한 막과 플라즈마에 의해 무정형 실리콘을 증착시킨 후 열처리한 막은 양질의 결정성을 갖는 Si가 풍부한 티타늄 실리사이드가 형성되고, 열처리 과정에서 에피택시 성장을 위한 격자들의 회전에 의해 다양한 형태의 격자구조를 갖는다. 티타늄 실리사이드 막의 band gap은 플라즈마에 의해 a-Si:H막을 증착시킨 후 열처리한 막이 수소의 탈착에 의해 제공된 dangling bond, a-Si 등의 영향을 받아 1.14~1.165 eV의 값을 가진다. 물리증착하여 열처리한 막의 Urbach tail인 $E_0$는 0.045~0.05 eV 범위로 거의 일정하고, 플라즈마에 의해 a-Si:H 막을 증착시킨 후 열처리한 막의 결함수는 Ti/Si를 열처리했을 때 얻어진 결함수보다 약 2~3 배 정도 많은 것으로 나타났다.

Keywords

References

  1. Jpn. J. Appl. Phys. v.36 Sukjae Lee;Hwackjoo Lee;Hyeongtag Jeon
  2. J. Appl. Phys. Lett. v.67 R. W. Mann;G. L. Miles;T. A. Knotts;D. W. Rakowski;L A. Clevenger;J. M. E. Harper;F. M. D'Heurle;C. Cabral
  3. Appl. Phys. Lett. v.66 R. A. Roy;L. A. Clevenger;C. Cabral;Jr.;K. l. Saenger;S. Brauer;J. Jordan-Sweet;J. Bucchignano;G. B. Stephenson
  4. Appl. Phys. Lett. v.67 R. W. Mann;G. L. Miles;T. A. Knotts;D. W. Rakowski
  5. Jpn. J. Appl. Phys. v.34 H. Kotaki;M. Nakano;S. Hayashida;S. Kakinoto;K. Mitsuhsashi;J. Takagi
  6. J. Appl. Phys. v.77 Z. Ma;L. H. Allen;D. D. J. Allman
  7. J. Appl. Phys. v.77 A. W. Stephenson;M. E. Welland
  8. J. Appl. Phys v.67 Ivo J. M. M Raaijmakers;Ki-Bum Kim
  9. Surf. Sci. v.155 E. J. Van Loenen;A. E. M. J. Fisscger;J. F. Vander Veen
  10. J. Appl. Phys. v.68 S. F. Gong;H. T. G. Hentzell
  11. J. Appl. Phys. v.71 Hyeongtag Jeon;C. A. Sukow;J. W. Honeycutt;G. A. Rozgonyi;R. J. Nemanich
  12. Appl. Phys. v.72 X. H. Li;J. R. A. Carlsson;S. F. Gong;H. T. G. Hentzell
  13. J. Appl. Phys. v.64 Y. Mishima;T. Yagishita
  14. Appl. Phys. Lett. v.69 A. Mouroux;S. L. Zhang;W. Kaplan;M. Ostling;C. S. Petersson
  15. Jpn. J. Appl. Phys. v.36 H. Katsumata;Y. Makita;N. Kobayashi;H. Shibata;M. Hasegawa;S. I. Uekusa
  16. Phys. Rev. v.101 D. L. Dexter