Plasma CVD에 의해 제조된 Iron Silicide 박막의 광학적 특성

Optical Characteristics of Iron Silicide Films Prepared by Plasma CVD

  • Kim, Kyung-soo (Department of Chemical Engineering, Dan-kook University) ;
  • Yoon, Yong-soo (Department of Chemical Engineering, Dan-kook University) ;
  • Jung, Il-Hyun (Department of Chemical Engineering, Dan-kook University)
  • 투고 : 1998.06.16
  • 심사 : 1999.03.08
  • 발행 : 1999.05.10

초록

저온 공정이 가능한 rf-plasma를 이용한 화학증착법으로 기판의 온도, 출력, $SiH_4$와 천음 함유한 유기화합불 진구체의 희석비 등을 변수로 각 실험 조건에 따라 iron silicide를 제조하였다. 일반적으로 iron silicide 막은 다단계 공정의 Ion Beam Synthesis (IBS)법으로 성장시키고 있으나, 플라즈마를 사용함으로써 단일공정에 의해 $Fe_aSi_bC_cH_d$로 결합된 iron silicide 및 ${\beta}$-상이 형성될 수 있음을 확인하였다. 철 전구체와 실란 (silane)의 희석비에 따라 막 내에 존재하는 탄소와 수소양의 차이로 인해 서로 다른 막의 특성을 나타내었다. 기관의 온도에 따른 광학에너지갭 ($E_b^{opt}$)은 박 표면에 존재하는 수소가 탈착되면서 제공할 수 있는 활성점이 한정되어 있기 때문에 큰 변화가 없었다. 240 watt 이하의 출력에서는 광학에너지갭이 감소하였고, 240 watt 이상의 높은 출력에서는 식각에 의해 미결합수가 증가하여 광학에너지갭은 높게 나타났다.

The iron silicide films were prepared by chemical vapor deposition method using rf-plasma in variations of substrate temperature. rf-power, and ratio of $SiH_4$ and Fe-precursor. While iron silicide films are generally grown by ion beam synthesis (IBS) method of multi-step process, it is confirmed that iron silicide or $\beta$-phase consolidated $Fe_aSi_bC_cH_d$ was formed by one-step process in this study. The characteristics of films is variable because the different amounts of carbon and hydrogen was involved in the films as a function of dilute ratio of Fe-precursors and silane. It was shown that the different characteristics of films in carbon and hydrogen following the ratio of Fe-precursor and silane. The optical gap energy of films fabricated according to substrate temperature was invariant because active site brought in desorption of hydrogen was limiled. When rf-power was above 240 watt, the optical gap energy turned out to have high values because of dangling bonds increased by etching.

키워드

참고문헌

  1. Physical Review B v.42 N. E. Christensen
  2. Appl. Phys. Lett. v.65 J. Y. Natoli;I. Berbezier;J. Derrier
  3. Jpn. J. Appl. Phys v.36 H. Katsumata;Y. Makita;N. Kobayashi;H. Shibata;M. Hasegawa;S. I. Uekusa
  4. J. Appl. Phys v.68 C. A. Dimitriallis;J. H. Werner;S. Logothetidis;M. Stutzmann;J. Weber
  5. J. Appl. Phys. v.74 D. J. Oostra;C. W. T. Bulle-Lienwma;D. E. W. Vandenhoudt;F. Felten;J. C. Jans
  6. Appl. Phys. Lett. v.59 D. J. Oostra;D. E. W. Vandenhoudt;C. W. T. Bulle-Lienwma;E. P. Naburgh
  7. J. Appl. Phys. v.80 H. Katsumata;Y. Nakita;N. Kobayashi;H. Shibata;M. Hasegawa;I. Aksenov;I;S. Kimura;A. Obara
  8. Thin Solid Films v.295 M. Ozvold;B. Gasparik;M. Dubnicka
  9. J. Appl. Phys. v.69 K. Lefki;P. Muret;N. Cherief;R. C. Cinti
  10. J. Appl. Phys. v.79 Z. Yang;K. P. Homewood
  11. Jpn. J. Appl. Phys. v.30 H. Yoshihiro;N. Noboru;T. Shinya;N. Shoichi;K. Yasuo;K. Yusinori
  12. Physical Review B v.51 A. Rizzi;B. N. E. Rosen;D. Freundt;Ch. Dieker;H. Luth
  13. CVD핸드북 이시우;이전