Regeneration of Used Commercial Catalyst for deNOx Emitted from Stationary Sources

배연 탈질용 폐촉매의 재생에 관한 연구

  • Moon, Il-Shik (Department of Chemical Engineering, Sunchon National University) ;
  • Cho, Gyoujin (Department of Chemical Engineering, Sunchon National University)
  • 문일식 (순천대학교 공과대학 화학공학과) ;
  • 조규진 (순천대학교 공과대학 화학공학과)
  • Received : 1998.09.12
  • Accepted : 1999.01.12
  • Published : 1999.04.10

Abstract

NO removal activity (per unit of mass) of the used catalyst was seriously decreased as low as 27% of the new catalyst. Since the surface area of the used catalyst was 63% of that of the new one, the mojor reason for the lessened activity of the used catalyst compared to the new one may be due to the decreased surface area by sintering and surface concentration of active materials. Poison may be regarded as another important factor, since it affect the active site of catalyst by heavy metals. To recycle the used catalyst, we focused on the removal of poisoning agents from the catalyst. By using $80^{\circ}C$ water for 30 min upto 2 h, the recycled catalyst demonstrated the best activity and efficiency, which may be due to the removal of both K and Na. Although the recovered activity (per unit of surface area) of the catalyst was 79% compared to the new one, the activity (per unit of mass) of the recovered catalyst was only 49% compared of the activity of fresh catalyst.

사용이 끝난 폐촉매의 NO 제거 활성은 새 촉매의 약 27%로 크게 저하되어 있었다. 폐촉매의 비표면적은 새로운 촉매의 약 63%로서 활성소실의 주 원인은 소결에 의한 표면적 감소, 촉매표면의 활성물질의 농도저하, 중금속에 의한 활성점의 피독 등으로 판단된다. 폐촉매의 재생은 주로 피독 물질의 제거에 중점을 두었는데, $80^{\circ}C$ 물을 이용하여 30분에서 2시간 처리하여 재생한 촉매가 가장 좋은 효과를 보였으며 이는 중금속 K와 Na가 제거된 때문으로 판단된다. 새로운 촉매를 기준으로 하였을 때 폐촉매의 표면적당 재생된 활성은 약 79%이었으나 질량당 재생된 활성은 약 49%이었다.

Keywords

Acknowledgement

Supported by : 순천대학교

References

  1. Catalysis Today v.2 H. Bosch;F. Janessen
  2. Chemical Industry and Technology v.6 I. S. Nam
  3. J. Catal. v.48 H. Niiyama;K. Murata;E. Echigoya
  4. J. Catal. v.59 M. Mizumoto;N. Yamazoe;T. Seiyama
  5. J. Chem. Eng. Jpn. v.14 H. NIiyama;K. Sasamoto;S. Yoshida;E. Echigoya
  6. Ind. Eng. Chem. Prod. Res. Dev. v.14 George, L.;Bauerle, S.;C. Wu;K. Nobe
  7. Ind. Eng. Chem. Prod. Res. Dev. v.17 Geroge L.;Bauerle, S.;C. Wu;K. Nobe
  8. Bull. Chem. Soc. Jpn. v.55 S. Morikawa;K. Takahashi;J. Mogi;S. Kurita
  9. J. of Catalysis v.48 H. Niiyama;K. Murata;E. Echigoya
  10. J. of Catalysis v.62 M. Inomata;A. Miyamoto;Y. Murakami
  11. J. of Catalysis v.50 M. Tagaki;T. Kawai;M. Soma;T. Onishi;K. Tamaru
  12. Ind. Eng. Chem. Prod. Res. Dev. v.14 Gerorge, L.;Bauerle, S. C. Wu;K. Nobe
  13. Ind. Eng. Chem. Prod. Res. Dev. v.25 I. S. Nam;J. W. Eldridge;J. R. Kitrell
  14. J. of Catalysis v.59 M. Mizumoto;N. Yamazoe;T. Seiyama
  15. Chemistry Letters M. Iwamoto;H. Yahiro;Y. Mine;S. kagawa
  16. Ind. Eng. Chem. Prod. Res. Dev. v.19 J. R. Kiovsky;P. B. Koradia;C. T. Lim
  17. Catalysis Today v.4 Jan G. M. Bradin;Lars A. H. Anderson;C. U. Ingemar Ldebrand
  18. Ind. Eng. Chem. Prod. Res. Dev. v.18 T. Seiyama;M. Mizumoto;T. Shihara;N. Yamazoe
  19. J. Japan Petrol. Inst. v.36 I. S. Moon;S. Namba;T. Yashima
  20. J. of Catalysis v.148 T. Komatsu;M. Nunokawa;I. S. Moon;T. Takahara;S. Namba;T. Yshima
  21. Nippon Kagaku Kaishi v.2 A. Mishijima;M. Kurita;T. Sato;Y. Kiyozumi
  22. American Laboratory G. Lee;C. Ray;R. Siemers;R. Moore