Structural Properties of Epoxy-Montmorillonite Nanocomposites

몬모릴로나이트와 에폭시수지로부터 합성된 나노복합재료의 구조적 특성에 관한 연구

  • Sur, Gil-Soo (School of Chemical Engineering & Technology, Yeungnam University) ;
  • Ryu, Joung-Gul (School of Chemical Engineering & Technology, Yeungnam University) ;
  • Lyu, Sung-Gyu (School of Chemical Engineering & Technology, Yeungnam University) ;
  • Choi, Hyun-Kuk (Department of Chemical Engineering, Sangju National University) ;
  • Kim, Bong-Sik (School of Chemical Engineering & Technology, Yeungnam University)
  • 서길수 (영남대학교 응용화학공학부) ;
  • 류정걸 (영남대학교 응용화학공학부) ;
  • 유성구 (영남대학교 응용화학공학부) ;
  • 최현국 (상주대학교 화학공학과) ;
  • 김봉식 (영남대학교 응용화학공학부)
  • Received : 1999.03.31
  • Accepted : 1999.05.21
  • Published : 1999.06.10

Abstract

Polyether-clay nanocomposite was not polymerized with stearyltrimethylammonium ion exchanged montmorillonite, but it was self-polymerizable when heated with both stearyltrimethylammpmoim and m-phenylenediammonium ions intercalated montmorillonite to form polyether-clay nanocomposites. Molcular disperion of montmorillonite within the crosslinked epoxy matrix verified using X-ray diffraction and transmission electron microscopy found that the final product contains a uniform dispersion of exfoliated $10{\AA}$ thin clay layers seperated by $250{\sim}500{\AA}$of polyether polymer, thus verifying the nanocomposite structure.

스테아릴트리메틸암모늄 이온만 삽입된 몬모릴로나이트는 나노복합재료를 형성하지 못하였다. 그러나 스테아릴트리메틸암모늄과 m-페닐렌디암모늄 염이 함께 삽입된 몬모릴로나이트와 diglycidyl ether of bisphenol A(DGEBA)와 가열하면 중합반응이 일어나 폴리에테르-몬모릴로나이트의 나노복합재료를 합성하였다. 합성한 나노복합재료를 XRD과 TEM을 통하여 에폭시 메트릭스내의 몬모릴로나이트의 실리케이트층이 한층 균일하게 분산되어 있음을 확인하였다. 그리고 각각의 실리케이트 층간거리는 $250{\sim}500{\AA}$ 정도였다.

Keywords

References

  1. J. Polym. Sci v.31 Y. Kojima;A. Usuki;A. Okada;M. Kawasumi;A. Okada;T. Kurauchi;O. Kumigaito
  2. Adv. Mater v.7 R. V. Vaia;S. Vasudevan;W. Krawiec;L. G. Scanlon;E. P. Giannelis
  3. Chem. Mater v.5 J. Wu;M. M. Lerner
  4. J. Polym. Sic., Part A: Polym. Chem. v.33 P. B. Messersmith;E. P. Giannelis
  5. Chem. Mater v.7 S. D. Bumside;E. AP. Giannelis
  6. J. Polym. Sci: Polym. Chem. v.31 K. Yano;A. Usuki;T. Kurauchi;O. J. Kamigaito
  7. J. Polym. Sci v.3 A. Blumsein
  8. Formation and Properties of Clay-Polymer Complexes B. K. G. Theng
  9. Chem. Mater v.6 T. Lan;T. J. Pinnavaia
  10. Polym. Prepr v.28 A. Okada;M. Kawasumi;T. Kurauchi;O. Kumigaito
  11. J. Polym. Sci: Polym. Chem. v.31 Y. Kojima;A. Usuki;M. Kawasumi;A. Okada;t. Kurauchi;O. Kumigaito
  12. Chem.Mater v.6 T. Lan;P. D. Kaviratna;T. J. Pinnavaia
  13. Chem. Mater v.7 S. D. Burnside;E. P. Giannelis
  14. Adv. Mater v.8 E. P. Giannelis
  15. Chem. Mater v.7 T. Lan;P. D. Kaviratna;T. J. Pinnavaia
  16. Polymer Abstract (Korea) v.22 no.2 G. S. Sur;J. G. Ryu;S. G. Lyu
  17. Polymer Abstract(Korea) v.22 no.2 J. G. Ryu;S. G. Lyu;B. Y. Shin;G. S. Sur
  18. 한국공업화학회 연구논문초록집(추계) J. G. Ryu;S. G. Lyu;G. S. Sur
  19. 영남대학교 공업기술연구소논문집 v.26 no.1 류정걸;박근록;유성구;서길수
  20. Polymer Abstract(Korea) v.23 no.1 J. G. Ryu;G. R. Park;G. S. Sur
  21. Applied Chemistry(korea) v.2 no.1 J. G. Ryu;G. R. Park;C. U. Lee;S. G. Lyu;G. S. Sur
  22. Polymer Abstract(Korea) v.23 no.2 J. G. Ryu;G. S. Sur
  23. Clay Miner v.21 H. Vali;H. M. Koster
  24. Clay Mineralogy R. E. Grim
  25. Private communication J. W. Lee
  26. Polym. Eng. Sci. v.13 R. B. Prime
  27. Thermal Characterization of Polymeric Materials R. B. PrimeE. Turi(ed.)
  28. Therm. Anal v.2 T. J. Ozawa
  29. Anal. Calorim v.4 S. AJ. Swarim;A. M. Wims