Pervaporation Separation of Water-isopropanol Mixtures through Modified Asymmetric Polyetherimide Membrane: the Effect of NaOH Concentration and Modification Reaction Times on the Morphology of the Morphology of the Modified Membranes

개질 비대칭 폴리에테르이미드막을 통한 물-이소프로판올 혼합물 투과증발 분리: NaOH용액의 농도와 개질반응 시간에 따른 몰폴로지 변화

  • Kim, Sang-Gyun (Membranes and Separation Research Center, Korea Research Institute of Chemical Technology) ;
  • Jegal, Jonggeon (Membranes and Separation Research Center, Korea Research Institute of Chemical Technology) ;
  • Lee, Kew-Ho (Membranes and Separation Research Center, Korea Research Institute of Chemical Technology)
  • 김상균 (한국화학연구소 분리소재연구센터) ;
  • 제갈종건 (한국화학연구소 분리소재연구센터) ;
  • 이규호 (한국화학연구소 분리소재연구센터)
  • Received : 1998.11.30
  • Accepted : 1999.04.28
  • Published : 1999.06.10

Abstract

Asymmetric polyetherimide membrane were prepared by phase inversion method, and the effects of NaOH concentration and reaction time on the morphology change of the polyetherimide membranes were studied. The morphology of skin layers varied from dense structure to sphere structure with increasing concentration of modification solution. The thickness of dense layer increased with increasing reaction time. However, when either the concentration of modifying solution was very high or the reaction time was very long, the dense layers of the asymmetric membrane were disappeared. From these results, it was found that the surface morphology of the asymmetric polyetherimide membranes depended strongly on the modification conditions such as concentration of modification solution and reaction time. These results might be explained by the hydrolysis reaction of polyetherimide into polyamic acid by the NaOH solution.

상분리 방법으로 비대칭 폴리에테르이미드막을 제조하였고, 수산화나트륨 수용액으로 막의 표면층을 개질 했을 때의 몰폴로지 변화를 반응기간과 반응용액 농도에 대하여 살려보았다. 표면층 몰폴로지는 개질 용액의 농도가 증가함에 따라 치밀한 구조에서 둥근 입자상의 형태로 변화되었고, 개질 시간이 증가될수록 치밀 영역이 증가되었다. 그러나 반응 농도가 아주 높거나 장시간 개질을 하면 비대칭 폴리에테르이미드막의 표면에서 치밀 구조층이 없어지는 결과를 나타냈다. 결과적으로, 표면의 몰폴로지는 개질 용액의 농도와 시간에 따라 크게 좌우됨을 알 수 있었다. 이러한 결과는 폴리에테르이미드가 수산화나트륨에 의해서 폴리아믹산으로 가수분해되면서 나타나는 현상으로 추측되었다.

Keywords

References

  1. J. Membr. Sci. v.33 D. R. Seok;S. G. Kang;S. T. Huang
  2. Membrane Handbook H. L. Fleming;C. S. Slater;W. S. W. Ho(ed.);K. K. Sirkar(ed.)
  3. Pervaporation Membrane Separation Processes J. Neel;R. Y. M. Huang(ed.)
  4. J. Appl. Polym. Sci. v.30 M. H. V. Mulder;J. Oude;Hendrikman;J. G. Wijmans;C. A. Smolders
  5. J. Memb. Sci. v.84 R. Y. Huang;X. Feng
  6. J. Memb. Sci. v.86 H. Yanagishita;C. Maejima;D. Kitamoto;T. Nakane
  7. Report No. 60-60, University of California S. Leob;S. Sourirajan
  8. Synthetic polymeric Membranes(2nd ed.) R. E. Kesting
  9. ACS Series 269 Materials Science of synthetic membranes D. R. Lloyd
  10. Advan. Chem. Ser. v.35 L. Leob;S. Sourirajan
  11. Reverse osmosis membranes research R. L. Riley;g. R. Hightower;C. R. Lyons;H. K. Lonsdale(ed.);H.E. Podall(ed.)
  12. Basic priciples of membrane technology(2nd ed.) M. Mulder
  13. Ind. Eng. Chem. Res. v.32 X. Feng;S. Sourirajan;H. Tezel;T. Matsuura;B. A. Farnand
  14. Polyimides: Synthesis, Characterication and Application v.1 I. W. Serfaty;K. L. Mittal(ed.)
  15. J. Appl. Polym. Sci. v.57 R. Y. M. Huang;X. Feng
  16. J. Korean Ind. & Eng. Chem. v.8 S. G. Kim;J. G. Jegal;K. H. Lee