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This paper deals with a priority queueing model in an ATM system. Twe
types of customers are considered. Type-1 customers have push-put priority
over type-2 customers. Type-1 customers can enter the service only when the
number of type-2 customers is less than a threshold T.

We derive the joint probability of the number of customers in the buffet, the
mean waiting time, and the loss probabilities of each type. We also propose
an optimal control policy that satisfies a given quality of service.

1. Introduction

The asyncronous transfer mode(ATM) is considered
as the basis for the future B-ISDN which integrates
different types of information services such as voice,
data and video communication. Each type of info-
rmation services has its own quality of service(QoS)
requirements, taking cell loss probability and cell
transfer delay into consideration. Numerous studies
on buffer control strategies have been presented for
the purpose of effective management of the QoSs.

For finite buffer systems, a space control strategy
is composed of service discipline and the buffer
access control discipline. The former is concerned
with the rule of customer selection for next service,
while the latter deals with the rule of customer
acceptance.

In general, "loss priority” and "time priority” rules
are applied to the disciplines. Time priority scheme
is used to reduce the waiting time of high priority
customers. The usual HOI(Head of Line} mecha-
nisms have suggested differnt delay characteristics
for different types of customers 3], {10} Loss

priority scheme is used to reduce the loss probability
of high priority customers usually at the expense of
low priority customers. Two loss priority mecha-
nisms have been proposed and studied by Kroner
{61, Kroner er al. {7} and Rothermel [9}: "push-out”
and "partial buffer sharing". In the push-out
mechanism a high priority customer arriving to the
full buffer pushes out one of the low priority
customers, In the partial buffer sharing mechanism,
an arriving low-ptiotity customer is denied of
admission if the buffer occupancy reaches a given
threshold, whereas high-priority customers are
accepted as long as there is a vacancy. Ahn and
Lee[1}{2} analyzed the partial buffer sharing scheme
with threshold and proposed an algorithm to obtain
the optimal buffer size for each class of customers.

Application of only one of those priority schemes
may cost efficiency and effectiveness that might have
been avoided if the other scheme is applied.
Recently, some systems in which both time and loss
priority mechanisms were implemented were studied
by Gravey & Hebuterne {5} and Neuts [8].

In this paper, we build an M, My/M/1/B+1
queueing model to analyze the system with both loss
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and time priorities. Type-1 customers have O { 1, if the server is busy at time
loss-priority over type-2 customets while type-2 0, if the server is idle at time
customers have time-priority over type-1 customers. _ _

We derive the joint distribution of the number of Pi#) = PrlM(t) =+ M(t)=j Y(H=1]
customers in the buffer, the mean queue waiting _ _
times and the loss probabilities. We also derive the Qoolt) = Prl¥ () =10]
on(l):Simai buffer control policy that satisfies the given P.,= mP,(t), 0<jsD, 0<is B

s. o

Qu.o = 1}_{{.} .0

2. The system and the model State (7, 7) : in steady-state, there are 7 type-1

customers and ; type-2 customers in

The queueing system studied in this paper is the buffer (exduding the one in service)

characterized as follows :

1) There are two types of customers: type-1 and
type-2. Type-¢ (i=1,2) customers arrive
according to a Poisson process with rate 2,.

2) The system has the buffer of size B (thus there
can be B+1 customers in the system
including the one in service).

3} On all occasions, non-preemption is assumed.

4) Type-2 customers are allowed to occupy the
buffer up to the level (D < B).

5) If the number of type-1 customers in the buffer
is less than the threshold 7( <B— D) at the
end of a service, a  type-2 custorner is served.
Otherwise, a type-1 customer is served. If only
one type of customers exist at the end of a
service, one of them is taken into service.

6) A type-1 customer who arrives when the buffer
is full pushes out the oldest type-2 customer (if
any).

Since customers arrive according to Poisson

processes, the state probabilities observed by

arriving customers are identical to the

time-average probabilities (PASTA (Wolff {10} )}.

Since service distributions are exponential, the

system is Markovian. let us define the

following notations and probabilities :

A, 1 arrival rate of type-1 customer

Ay 1 arrival rate of type-2 customer

A total arrival rate (A=, + 1;)

gt service rate

Ni(D 1 queue size (number of customers in the
buffer excluding the one in service) of
type-1 customers at time ¢

The rate flow diagram is seen in <Figure 1>,

Figure 1. The rate flow diagram.

N,(# 1 queue size of type-2 customers at time ¢ 2.1 The system equations

B : buffer size )

D : maximum allowed occupancy of type-2 From the rate diagram we can set up the
customers ( D < B) following steady-state system equations:

T : threshold for the service priotity of type-1
custormess, (7' < B—D) (A +22)Q00 = 1Py s 2.1
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(pt+ At A) Py o= (A1 + )@ o+ 2Py o+ 1Py 2.2
(p+ 2+ A)Pg= MNPy ot uPippt P, (1<i<T-1) (2.3)
(ut+ A+ A)Pg = MPi1ot #Pivrg  (T<i<B-1) (2.4)
(pt+ A+ A2)Py ;= APy -1+ 8P, i1 (1<j=<D-1) (2.5)
(p+ A+ A)P; ;= APy j+ AP P (1<i<T-2,1<7<D-1) (2.6)
(p+ A+ )P ;= APooy j+ AP+ uPi; (i=T-1, 1<;<D-1) 2.7)
(pt A+ AP ;= NPy AP T 1P+ iPiny;  (T<i<B—j—1,1<j<D-1) (2.8}
(At )Py p= AP (2.9}
(Ay+p)Pip=APip 1+ AiPio1p (1<£i<T-2) (2.10)
(A + )P p= AP poy Y APy pt Py p (i=T-1) 2.11)
(A + )P p= AP po1+ AP pt P p  (T<i<B-D-1) (2.12)
#Ppo= A Pg_ 1 o+ AiPp-1) (2.13)
(A1 +#)Pp_pp=A\Pe_p_1ptAPB-p D1 (2.14)
(A + )P, ;= APy j+ AP+ AP (iti=B, 1=7<D-1) (2.15)
where A, = 1 .
(A+ ) — pdyAy
2.2 Recursive solution In the similar way, we have
Py ;= AAp_ Py -1, (1sisp-2) (2.19)

Recursive solution seems to be the only way to
solve the above system of equations due to their
complexity. We first express @y and P;; in terms

of Py and Pg,. We then express Py p in terms of
Py, Finally using the normalization condition, we
obtain the state probabilities. To this end, we take
the following steps.

(Step 1)
From (2.1),
G0 = j‘f_Pn,n' (2.16)

(Step 2) (=0 ,0<7<D)
From (2.9), we have

Pop= APy p-15 2.17)

where 4, = AIIJ”{ .

Using (2.17) in (2.5), we get

Py p_i = AA Py p_a, (2.18)

_ 1
Where A.D—j_ (.;l.'l'/.t) — ﬂ/‘gAD_J;_I .

(Step 3) (i=1, j=0)
If we sum up (2.1), (2.2), (2.5) and (2.9), we have

’ll(gpﬂ‘f) = 4P,

Thus we have

!

Where {Pﬂ,h }: 0‘ 1‘, D} mobtalf)?d n (StEP 2)

(2.20}

(Step 4) (i=1, 1=<7<D)
From (2.10}, we have

PI,D: AZADPI.D—1+A1AUPU.D (221)

Using (2.21) in (2.6),

P po1= AP pa+ 4A P p
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+ 1A AgA Py o (2.22)
In the similar way, we have
Py = AAp- P
_ | (2.23)
=/ — B
i1 3 [Pro-o L Auu? ]
(1£;<D-2)
_ 1 - 1
where A, = A ad A= T DA ha”

(Step 5) (2=i<T=2, 0£;7<D)
In the similar way as in (step 4),

P = AAp- ;P

+a g[ﬂ--l,m (AT A

(2<:<T=2, 1<;=D)

(2.24)

From (2.3), (2.6) and (2.11), we have

A :
Po= 71 iﬁP;_l.b (2<i<T—-2) (2.25)

(Step 6) (T—1<i<B—1, j=0)
From (2.4), we get

Pp 1= AIBUPB—z.O + uByPg (2.26)

where B, = A—_}_;—

In the similar way, we have, from (2.4),

4 B=ir]
Pio=A4Bpgi-1Pi—10t P-B_’( mI;Iu Bm)PB,(}

(T<i<B-2) (2.27)
_ 1
where B, = FETAEY
From (2.3), (2.6) and (2.11), we have
P
Proyo= j i;PT_z_,- (2.28)

By careful examination, we see that Py_,, can be
expressed in terms of P, , alone. Let Xy_,  be the
coefficient of P, , such that

(2.292)
X1y can be easily calculated from (2.24).

Pro1o=Xr-1.0F00
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Now, let X,, and Z;, be the coefficients of Py
and Py, respectively when P;, is expressed in
terms of Py, and Pg, such that

Pio= XioPyotZioPro (2.29b)
Then from (2.4}, we get, for T<i<B—1,

Pio=MBp i1 Xic10b00 T

B—i-1
ALBB—E—IZ£—1,0+#B ! ml:lﬂ Bm]PB,[]
Thus we have recursions

Xio=ABs -1 X 10 (2.30a)

Zip=ABg_i 1 Ziipt ﬂB_i(B;lj_Dle) (2.30b)

Thus starting from X,_, , and Zr, (note
Zr_10=0 from (2.292)), we can obtain the
coefficients X, and Z;, recursively. In the sequel,
we will use X, ; and Z,; as the coefficients of P,
and Ppg, respectively such that

P =X, Poo+ ZiiPro
(Step 7)(i=B=1, j=1)

From (2.13), we have

(2.31)

Py, = fpﬂ,n—Ps—w

= _,%PB‘[]_[XB—LUPD,D + Zp_1.0Pg,0}

= —Xp-10P00 T
[-,%_ZB—I.U]PB.U (2.32a)

Thus we see that

XB—I,l = _XB—LU,

V4 R £ —Zs 10 {2.32b)

A;
(Step 8) (i=T-1, 7=1)

From (2.3}, we obtain

Pr,= '}:f (A+m PT—I.D_AIPT—E,U_FPT.D] (2.33)

A
[ P R Py = Xy
—Z7.oP50

where Pr_,4 was obtained in (step 3.
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(Step N (T<i<B-2, j=1)
Similatly from (2.8), we get

Beir? B2
Py = AiBp-ioPi-11t Ay "ZU [PB—Z—n u( ljn ) (Boimh- ”}‘HJB " 1( 1:[0 Bm)PB—l.l
Bei-2 8 : _
= [2133_5_2}(,‘_1,1‘!‘&2 ?SZU XB—E- . ( I:I ) B— t—2—n+ﬂB—x—l
B=j-2
( mI;[U Bm)XB—l.l]Pn,0+[AlBB—av-zZr-Ll+

/123;2_]223—2—”,0(B;lj;zBm)#B_T_z "+ T“( ﬁ )ZB—l.l]PB.O

2.34)
= i -1
where B,, T — B, and B, FE
(Step 10) (i=T-1, 2S;SD 1
From (2.8), we get
Pry;= ‘1‘[(3‘*'#)1:’?—1 -1 AP 1= A3 Py 4o ‘—MPTJ—L]
A+ A
[i—‘ungT Li-1- er—l;— = X1 1]P00 T Prog (2.35)
As
[MZT—l;-— 721“—1,,;—2—27,;—1]133,0
where Pr_,,_, was obtained in {(step 5).
Step 1) (T<i<B—j, 2<j<D-1)
From (2.15), we get
(A + 1)
Pp ;i = I‘R—IPB—HL;—l_PBw;'J—l
A (A;+ ) A
= —jﬁ‘Ps-fH.f-z i{ilXB-—iﬂ,;— =X - 1,12 X p-j+1.-2 ]Pn.n
(4 +m A
+[_J;1—ZB-_:‘+1.;'—IZB—}.;'—1__ AQ Zg- jt+li— Z]PBD
For T<i<B-j—1, we have
Bl o (B—i—j—1—n B-i—if T !
Pif = AIBB—i—j—IPi—I,j'l'AZ ”g [PB—;'—l—n‘f-—l( Bm)ﬂ ! ]+# "( IT Bm)PB—;;

B-j=j—1 B-i=i—1 . B
= [AIBB—E—f—le'—I.j+AZ g XB—;'—?x—l.j—l( H Bm)# (8_3_1_”_”4‘#3_{_’( AL Bm)XB—j.;']
B—j=i—1
Pﬂ0+[/1138—;'—j—12a'—1.;‘+/12 g ZB i n-1,4-1

p ’( Tf m)ZB_f,j]PB_O 2.37)
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(Step 12) (i=T-1, j=D)
From (2.7), we have

Proip =%[ (A+@}Pr_y p1—APr2p-1—A22Pr—1pa— pPrp 1l

{ i) P A
=[ /‘: XT—l.D-l‘“fXT—l.D—z_XT.D—l]Po,o—jlp'r—z,n—l (2.38)
A
‘“[_(A—:Elzr—l,o—l_“;‘&ZT-—l,D—z—ZT,D—l]PB.O
where Pr_y p.| were obtained in (Step 5).
(Step 13) (T<i<B—-D, j=D)
From (2.12), we have
B—D— i B=D—i .
P p=ACg-p-Fi1.0F A ,g‘b ‘[PB—D—n.D—l( mlj” Con #B_D_i_"]
B—D—3 B=D-i )
={/‘1CB—D—;X;—1,D + 43 ,z‘h:[XB—D-n.D-l( ﬂﬁn Cm)ﬂB_D‘t-ﬂ]}P{)‘{) (2.39
B—D- i B=D-i .
+{AlCB—D—:'Zi—1,D + 4z ,2) [ZB—D—n.D-—l( mlj” CM)FB_D_P”]}PB.U
where C,,= 1 and Cp=—L1—.
(At ) — A Coy ¢ At
(Step 14)
Using Pr_yp, Pro1p-1» Prsp and Prp
in (2.7), we have
_ APrapt [ Xy pt X e p— (At ) X110 Proo 4
Ppo = (M+w)Zr 1 p— #Zp~AZ1-1,p-1 (2.40)
(Step 15) CUStomers as
Now we use (2.40) in all state expressions o
obtained in each step to express all state L= i} [n- mm%&”‘m P, ;} 3.1
n= = '

probabilities in terms of P, ;. Then using the
normalization condition

ot g&zf’xz;:l

we can get all the state probabilities.

3. Performance Measures

In this section, we derive the mean queue
waiting time and loss probabilities for each type
of customers.

3.1 Type-1 customers

Using the state probabilities obtained in section
2, we can derive the mean queue size of type-1

Since the type-1 customers who enter the system
are always served before they leave the system, we
use the Little's formula to obtain the mean queue
waiting time,

(3.2)

where 2, = A,(1— Pg,) is the effective artival rate.

If the buffer is full and no type-2 customers exist
in the buffer, an arriving type-1 customer is
blocked and lost. So the loss probability of type-1
customers becomes,

(3.3)

Prosst = Pro
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3.2 Type-2 customers
3.2.1 Mean queue waiting time

Even if 2 particular type-2 customer has entered
the buffer and taken an occupancy, he may be
pushed out by a type-1 customer who arrives and
sees the full system. Therefore, to analyze the
performance characteristics of a type-2 customer, we
need some information on the position of the type-2
customer. The analysis incorporating the information
on the position of the customers can be found in
Doshi & Heffes {4]. In this section, we extend their
method to calculate the mean queue waiting time of
an arbitrary type-2 customer whe is served.

Suppose an arbitrarily chosen type-2 customer (we
will call him 'test type-2 customer') arrives and joins
the system in position j, j=20,-,D (position 0
denotes the customer currently being served). We
define the following state at an 'event completion
point’ which is either an arrival point or a service
completion point. We also define the remaming
queue waiting time as the time duration from the
carrent time point till the test type-2 customer
begins to be served. We define the state (7,5, k) as

State (4,7, k) : after an event completion occurs,
there are 7 type-1 customers in the queue, the test
type-2 customer is in position j among the type-2
customers and there are % type-2 customers behind
him.

If j=0, then the test type-2 customer is already
in service and its remaining queue wating time is
zero. If 70, the test type-2 customer is still in the
buffer. Followings are the possible cases:

L. (For i<T—1)
i) The test type-2 customer in position j
moves to position j—1 if the next event
15 a service completion.
ii) If the next event is the arrival of a type-1
customer, ¢ lncreases to i+ 1.
i) (jte<D)
If the next event is the artrival of a type-2
customer, £ increases to k+1.{(;+k= D}
If the next event is the arrival of a type-2
customer, he is lost and the state is
unchanged.

2. (For {2 T)

H.YW Lee

i) If the next event is a service completion, i
decreases to i—1.

i) If the buffer is not full and the next evenr
is the arrival of a type-1 customer, i
ncreases to i—1.

(For j+k& < D)

If the buffer is not full and the next event
is the arrival of a type-2 customer, 2
increases to k+1. (For j+4= D)

If the buffer is not full and the next event
is the arrival of a type-2 customer, he is lost

1)

and the state is unchanged.
iv) (In case the buffer is fuli)
If the next event is the arrival of a type-2
customer, he is lost.
If the next event is the arrival of a type-1
customer, he pushes out the type-2
customer from the position 1 and joins the
buffer.
If the test type-2 customer 1s in position 1,
he is pushed cut. Otherwise he moves to

position j—1.

Since the state after the next event depends on the
current position of the test type-2 customer, the
number of type-1 customers and the number of
type-2 customers behind the test type-2 customer,
we define the following probabilities and the
Laplace-Stieltjes transform(LST),

a(i, 7, £) = Pr{ the test type-2 customer in
state will get served eventually}
A6, 7, k, ©)= Pr{the test type-2 customer in
state (7, 7, £) will getr served
eventually and its

time

remaining

queue  waiting will ot

exceed t]

Note that

B'Gij k) = fowe ~0lani i kB

(i, i, k) = dl_i.rgﬁ(z',j, E.D.
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Then, we can set up the following recursive
equations:

2(i,0,5)=1, forall ¢, &
.. .. A . . A .. . )
a(s,;,k)=‘;l—_';f—ﬂa(z,]—l,k)+ /1+ly ali+1,7. B+ /H—z,u &, 7, b+ (i< T—1, j+kEk<D-1)

p a(i+1,i,D—5) (i=sT—1, j+k=D)

ali,j,D=f) = 3Ealij=1,D=i) + 5o

.. . ) A .. A . .
ali, j, B = T_f—ﬂa(z—l,,f,k)-i- /H—z;z ali, f k1) + /H-l;z ali+1,5.8

(i2T, j+k<D-1) (i=T, j+k=D)

A
- . 1 . . . PN _ .
N _LA1+;z a(i—1,7, B + A1+#a(z+1,1 1A, (i2T, i+j+k=B,j*1)
ali, i, k) =
711;—#a(s‘—1,f.k), (i2T, i+itk=RBji=1)

Above equations are easily understood once it is Defining the LST,

A . -
understood that Tt for example, is the proba- 8i ik 6) = fn e " Pds(i i kD

bility th'at a type-1 arrival occurs before a service we can set up the recursive equations with
completion or a type-2 arrival occurs. respect to the LST

FG0. kD=1 foral 4 & (3.4)

A
M N 7 res o M . .
18(3’},1?,8) = ﬂ-f-ﬂ—f—ﬁﬁ(z’} l,k,5)+/1+#+918(3+1,.?’k,8)(z'éT_]_, i+k<D—1) (3.5)

/12 ook
+/1+‘a+5‘8(3’]’k+1’5}
A
*roo+ o _ E{ L o 1 o - 2
B85 D—i8= Ai+#+9,8(z.f 1,D 1,6’)+731+ﬂ+85(z+1,1,13 i &
(3.6)

(<T-1, j+k=D)

i A A
*r o0 . _ oo B 1 *g o . 2 e

A
a(i,j,D— = Tt a(i—1,7,D ﬂ-l-—'ﬁl_i_#a(z%—l,},D Di=2T, j+k<D-1) (3.7)
A
*g oo . - -——b xea i . ) i ... . .
U D=i0 =77 g #U-LiD 50+ g Bt 14D 4.6)
(i=zT, j+k=D) G.8)
A
_}1— e - _ 1 .y . .
A1+u+93(3 Lik 0+ A——-1+#+63(z+1,,; 1,46
B, ik 8} = (i= T, i+j+k=DBj%1) (3.9)
T FULik ), (i2T, i+j+k=Bj=1)

Now we can obtain the mean remaining queue
waiting time from
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. N i e .
Wi, i, k)= {;'g‘pdgﬁ(z’f,k,ﬁ)

where o7, 7, B) = 131_1.1& £, j. &k 8 from the Tauberian

theorem,

From (3.4)-(3.9), we get

HW Lee

W(i,0,R=0 forall ¢4
Wi, j, k) = —1:a(z B+ W(u 1A (isT-1, j+ks<D-1)
+F W(i+1,7, Jok+1)
W(i, i, D=7 = 2D J) W(z I=LD=D  (igT—1, j+k=D)
+ 7 + W(i+1,/, —J)
Wi ik = a(f J,k)+ W(z—l iR (=T, j+k<D—1)
k) i k+1)
W(i,j,D=)) = - (.3, D J)+—”— W(i~1,5, D) (2T j+k=D)
T3 + W(i+1,7,.D-5
b e i, B+ A W= 15,8 + o WG 1,71, 8
Wi j B = (i=2T, i+j+k=B, j*1)
T, vy T WG4, (i27, i+j+k=B j=1)
W(i j, B for all states can be obtained Pr=J"Pr{ a type-2 customer gets served | he is

recursively. Remember that W7, j, &) is the mean
remaining queue waiting time for the test type-2
customer who has entered the buffer and gets
served eventually. We observe that just after an
arrival of the test type-2 customer there are no
type-2 customers behind him. Thus W(4,7+1,0)
is the mean remaining waiting time just after his
arrival.  From PASTA (Wolfff 101), this occurs
with probability P, Thus we have the mean

queue waiting time of the type-2 customer who

is served as

Bl

2 P WL+1,0)
P,

= (3.10)

where

dlowed to enter the system]:-Prla type-2
customer is allowed to enter the system }

= ,=_ Bg_j“(i-j+1-0)Pé.;+ &o.0 (3.11)

If the server is idle when the test type-2
customer arrives, he immediately goes into service.

3.2.2. Loss probability

The loss probability of the test type-2 customer
is the sum of the blocking probability and the
probability that he is pushed out. The blocking
probability becomes

PB= IZP{.D'F
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and the pushed-out probability becomes

Z B:g-ipi,j -[1—alz,i+1,0)]

So the loss probability of rype-2 customers
becomes

Prose = ng’ (1—e(ii+1,0)] (3.12)

_ EB,_ZB_}PJ'JW(M+1,0)

%" Ps

4. Performance analysis

In this section, we show some numerical results
and present the optimal buffer control policy
that  sarisfies the quality of  service
requirements. For computational purposes, we
assume that service rate, g, is fixed at 1 for
all cases. From the fixed service rate, the
offered load( p=Afy) is determined by total
service rate( A= A; +Az)-

We compare the loss probabilities and the mean
queue waiting times of both type of customers for
different load ratios of type-2 customers (A,/A)

and offered loads { p=A/p). We assume B=230,
T=15 and D=8.

Ly JEos Reab.)

\
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<Figures 2> and 3 show the loss probabilities
Prosg and P iose for different load ratios of
type-2 customers. <Figures 4> and 5 show
the change of mean queue waiting time of
each type of customers. The loss probabilities
of type-1 customers vary from 1072 to 107°
for different values of load ratios. We also see
that mean queue waiting times of both types
of customers increase as the load ratio of
type-2 customer increases. This occurs because
as A, increases (withA fixed), the relative
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arrival rate x decreases. Then more 4, frequently

the system occupancy is below 7 and the chance
of getting service decreases.
Next we derive the minimum buffer contzol

policy which satisfies the quality of service
requirements as the load ratio of rype-2
customers increases (with the offered load is fixed
at p=0.7). We assume that the required loss
probability is 107® for type-1 customers and
107? for type-2 customers. Taking the mean
waiting times into consideration, we consider the
ratio W1/W>. The reason why we consider the
ratio is that even though the waiting times may
be negligible due to the small service time of
ATM network, the ratio may not be so either for
the fairness of service or for the discrimination of
service. <Figure 6> show the minimum buffer
size as the load ratio aries.
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