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This paper considers the problem of determining the optimum target values
of the quality characteristic of interest ¥ and the screening limits of a surrogate
variable X which is correlated with ¥ under two-stage screening procedure. In
the two-stage screening procedure, X is measured first to decide whether an
item should be accepted, rejected or additional observations should be taken.
If it is difficult to decide on the result of measured value of X, ¥ is then observed
to classify the undecided items.

Assuming that Yand Xare jointly normally distributed, a model is
constructed which involves selling and reduced prices, production, inspection, and
penalty costs. Methods of finding the optimum process mean and the screening
limits are presented. A numerical example and analysis of the results are also

presented.

1. Introduction

As a result of advances in automated manufacturing
systems, sensoring technology and automatic inspec
tion equipment, complete inspections are increasing
ly popular in industries in order to improve the out
going quality of its products. Suppose that there
is a lower specification limit I for the quality
characteristic ¥ of interest. All items are subjected
to acceptance inspection and those with ¥ <7 are
reprocessed or sold at a discount. Such quality
characteristics include filling weighes and volume.

Items produced by a production process may
deviate from the process mean because of variations
in materials, labor and operation conditions. The
process mean may be adjusted to a higher value in
order to reduce the proportion of the nonconf-
orming items. Using a higher process mean,
however, may result in a higher production cost.
Therefore, a process parameter g for the process
mean is to be selected so that the expected profit
per item is maximized.

This problem has been studied by several
researchers. Springer {1} and Bettes {2} considered
a filling process where upper and lower specification
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limits were given. The optimal target value was
obtained in order to minimize the reprocessing cost
and material costs for overfilled and underfilled
items. Golhar {3} studied a canning process in which
underfilled cans are emptied and refilled so that it
would be sold in the primary market. Al-Sultan (4},
Boucher and Jafari {5}, and Carlsson [6] discussed
situations in which the items are subjected to
lot-by-lot acceptance sampling rather than complete
inspections. Arcelus and Rahim {7} considered the
problem of determining simultaneously target values
for variable and attribute quality characteristics.
Chen and Chung {8] considered an economic model
for determining the most profitable target value and
optimum measuring precision level for a production
process.

In all these studies, inspection is performed on the
quality characteristic Y of interest (performance
variable). In some situations, it is impossible or not
economical to directly inspect the characteristic Y.
In such cases, the use of a variable X(surrogate
variable} which is highly correlated with ¥ is
attractive, especially when inspecting the surrogate
variable is relatively less expensive than V. In a
cement plant, for example, the weight of a cement
bag which is difficult to measure directly due to the
high-speed packing may be used as a performance
variable, The milli ampere(mA) of the load cell is
strongly correlated with the weight of a cement bag
and does not require special effort to measure.
Hence it can be considered as the surrogate variable
(Bai and Lee [9]). The idea of selecting the screening
limit on X has been studied by many researchers.
Bai and Lee {9} and Tang and Lo {10} presented
economic models that determine the process mean
and the screening limit on X when inspection is
based on X instead of ¥ for situations where items
with ¥ 2 L are sold art a fixed price and items with
Y <L are scrapped or reprocessed, respectively.
Lee and Jang {11} developed a procedure to select
economically target values for a production process
where an item is sold in one of two markets with
different profit/cost structures or scrapped.

In applications where quality assurance is critical
the outgoing quality improvement may be more
important than the reduction in the inspection cost.
Since a surrogate variable is not perfectly correlated
with ¥, some conforming items may be rejected and
excluded from shipment while some nonconforming
items may be accepted for shipment. These decision
errors are likely to occur when the value of a
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surrogate variable is close to the screening limits.
Consequently, in this situation, there may be an
economic advantage to reduce the errors by obse-
rving the performance variable even though the
inspection may be expensive. Of course, this can be
done only when the inspection of the performance
variable is not destructive. Based on this, Tang {12}
proposed an economic two-stage screening pro-
cedure where the surrogate variable is used in the
first stage and the performance variable is used in
the second stage. The screening limits are dete-
rmined by minimizing the total cost associated with
the screening procedure. Bai ez 2/, {13} considered
an economic two-stage screening procedure with a
prescribed cutgoing quality in logistic and normal
models.

In this paper, we consider the problem of jointly
determining the optimum process mean of the
qualicy characteristic of interest and screening limits
of the surrogate variable under two-stage screening
procedure. In the two-stage screeming, a surrogate
variable is inspected first to decide whether an item
should be accepted, rejected or additional obse-
rvations should be taken. If it is difficult to decide
on the result of measured value of X, the perfo-
rmance variable is then observed to classify the
undecided items. The optimum process mean and
screening limits of the correlated variable are jointly
determined by maximizing the profit function which
involves selling and reduced prices and production,
inspection, and penalty costs. In section 2, we pres-
ent a two-stage screening procedure for a production
process and develop methods of finding the opti-
mum process mean and screening limits of the
surrogate vatiable. A numerical example and ana-
lysis of results are given in section 3.

2. Two-Stage Screening Procedure

Suppose that the performance variable ¥ is normally
distributed with unknown process mean g, and
known vatiance ¢5. We assume that surrogate
variable X given Y=y is normally distributed
with mean A;+ A,y and variance 5% where A,
and 2, are known constants. 4, is assumed to be
positive so that X and ¥ have a positive relationship.
It can be easily shown that (X, Y) follow a
bivariate normal density function with means
(2, = A1+ A4, p,). variances, (o= 43 o5+ 0", ol),
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and correlation coefficient o= {136%/(2 62+ &)}
(see Tang and Lo [101). All jtems are inspected
prior to shipment to determine whether they satisfy
a lower specification limit L on ¥ or not.

The two-stage screening procedure is as follows:

First stage : Take a measurement x of X for each
incoming dtem. The item is (i) accepted if x> w,, (i2)
undecided if w, < x <w, and () rejected if x<awy,
where w, 2 w,.

Second stage : For the case (/i) in the Firsy stage,
observe y of 'Y and (i) accepr if v = L, and (i) rejec
éf y <L

Here, @, and w; ate screening limits for X. If
the surrogate variable X is negatively correlated
with Y, we then use a screening variable — X rather
than X. Note that there are no misclassification
errors at the second stage because all the undecided
items are inspected with the performance variable.

Items with Y > L are sold at a fixed price # to the
primary market, and items with Y < L are sold at
a reduced price y{< @) to the secondary market.
Since X is not perfectly correlated with ¥, some
items with ¥< L may be sold to the primary
market. The errors of accepting items with ¥ < L
incur penalty cost d(=a) which includes costs of
identifying and handling the defective items, and
service and replacement costs. The production cost
per item is linear in ¥, that is, 5+ ¢y where  and ¢
are constamts, and ¢, and ¢, denote the inspection
cost per item for the performance and surrogate
variables, respectively.

Therefore, the profit function P(x, v;x,, w;, @) = Py
15
Pr=g—b—cv—c,, Xzw, Y=L
a—b—cy—c,—d, Xz2w,¥=<L (D
a—b—cy—c,—c, msX<w, YL
F—b—oy—C— ¢y, =X <w, Y{L
r—b—cy—c,, X< ws
Then the expected profit per item is given by

E(Pr)=0(—-8)+{0{8,~—9;—0)
oy, — 7 —p )t —d¥(=381, 3. —p) (2
+ e, {0(8;) — @8 N+ A ¥F(8, 7 0}
+ W&, — 5 — o)+ (bt c(L—50,)) — ¢,

where @( -) and ¥ -, -;p) are the standard
normal distribution function and srandardized
bivariate normal distribution function with corre-
lation coefficient p, respectively, 3=(L—g,)/0, and.

&=(w;,—u)la,, i=1,2. See the Appendix for deta-
dled derivation.

The optimum values 47, 65, and 5" can be
obtained by maximizing E{P;), F(Pr) i a unimo-
dal function of #, &; and the optimum values 7~
and ¢} satisfy dE(Pr)/dp=10, JE(P7)/08:=0,
i=1,2 conditions given by Eq. (3)~(5):

—d®(= 81+ 70 (1=~ (a—7)
{o((81—7'0)) QU-pH"" — 08— 10}

(1-65" N +co,=0 3)
8t ={r"— (1-p) 0!
(cy/(d+r—adfe 4)
&= {7+ Q- "0"!
(c, lla—r)} e ()

See the Appendix for detailed derivations.

The optimum values 8, 85, and 3 can be
obtained by solving these equations simultaneously,
and compurational approach such as Gauss-Seidal's
iterative method can be used to obtain § 1, & 5, and

7". The optimum process mean ., and the screening
limits @] and wj; on X are obtained by

uy, = L—70, (6)
w] = g+ oo, for i=1,2 @)]

3. Numerical Example

In this section, an example which originally
appeased in Bai and Lee {9} is presented to illustrate
the optimum solution procedures. Numerical studies
are also performed to investigate the effects of a,, p,
and ¢,. IMSL [14] subroutines such as DNO- RIN,

DNORDF, and DBNRDF are used to evaluate the
inverse of the standard normal ditribution function
and standard wunivariate and bivariate normal
distribution functions, respectively.

Example: Consider a packing plant of cement fa-
ctory. The plant consists of two processes; a filling
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process and an inspection process. Each cement bag
processed by the filling machine is moved to the
loading and dispatching phases on a conveyor belt.
Inspection is performed by CWFs (continuous
weighing feeders). A CWF measures the mA (milli
ampere) X of the load cell of the cement bag, which
is positively correlated with the weight V' of the
cement bag. From theoretical considerations and
past expetience, it is known thar the variance of
Y, 02=(1.25Kg)*, and that X for give Y=y is
normally distributed with mean 4.0+0.08y Y and
variance (0.05mA)?. That is, X and are jointly
normally distributed, with unknown means (z, g, ),
known variances o2 = (0.112mA)%, &&= (1.25Kg)?,
and correlation coefficient o= (.894. The weight
marked on each bag is 40Kg, and it is the lower
specification  limit. Suppose that the cost
components and the specification limirs for ¥ are
a=$3.0, r=$2.25, ¢;=%0.1, ¢=%0.06,
c,=$0.04, ¢,=%0.004, d=%6.5, and L=40(kg).
For the two-stage screening procedure, we obtain

0.475
0.425
0.375
.325
0.275
0.225
0.175
0.125

Expected Profits

0.25 0.75
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7"=—1.787, 6 1=—0.782, and & ;=—2.807 from
Eq. (3)~(5). Therefore the optimum process mean
and screening limits for X are
uy = Ln'o, = 40.0—(—1.787 x1.25)
= 42.234(Kg)
@] = g+ 8o,
= 4.0+0.08x42.234 +(—0.782x0.112)
= 7.291(mA)
fb‘; = ﬂx+6}ax
=4.0+0.08x42.234 + (—2.807x0.112)
=7.064(mA)
and E(Pr)= $0.3235.

(1) Effects of o, : Let Model I and Model II be the

single-stage screening procedures. In the Model I
inspection is performed on the performance variable
Y, and in the Model II inspection is performed on
the surrogate variable X. Let Model HI be the
two-stage screening procedures. Expected profits of
the three models are shown in <Figures 1> and

1.75 2.25

Figure 1. Expected profits as a funcrion of ¢ ,.
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Figure 2. Process means as a function of g,
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< 2> for selected values of ¢, for 0.25 (0.25) 2.50.
<Figure 1> shows that the expected profic
decreases as o, increases. The computational results
agree with our intuition that expected profit for the
two-stage screening procedure is somewhat more
profitable than that of the single-stage screening
procedures. Expected profic of Model II is larger
than that of Model [ if o, takes a smaller value, bur
expected profit of Model II is smaller than thar of
Model I if ¢, takes a latger value. We also know
that # , tends to increase as ¢, increases as shown
in <Figure 2>,

(i} Effects of p: The expected profit per item, the
optimum process mean, and the screening
specification limits on X are given in <Figure 3>
for selected wvalues of ¢ for 0.650 (0.025) 0.975.
<Figure 3> shows that expected profits of Model

(.33
0.32
0.3t

0.3
0.28
0.28
0.27

Expected profi

0.8
0.83
0.85
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Figure 3. Expected profits as a function of p.

Proportion

IT and Model III increase as p increases. Expected
profits of Model III is greater than that of Mode] II
and the difference in the expected profits tends to
decrease as p increases, this compurational resules
agree with our intution,

(iiiy Effects of ¢,: The inspection proportions of
stage 1 and stage 2 are given in <Figure 4> for
selected values of ¢, for 0.02 (0.005) 0.07.

<Figure 4> shows that the inspection proportion
of stage 1 tends to increase, and the inspection
proportion of stage 2 tends to decrease as ¢, incre-

ascs.

4. Concluding Remarks

We have developed economic selections of the
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Figure 4. Proportion of inspection as a function of ¢,.
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optimum mean value of the quality characteristic of
interest and the screening limits of a variable which
is correlated with the quality characteristic of
interest under two-stage screenings. A profic model
is constructed under the assumption that the quality
characteristic of interest. Concluding Remarksrest
and the surrogate variable are jointly normally
distributed. The optimum process mean and
screening limits are jointly determined by
maximizing the expected profit which involves the
selling and reduced prices and the production,
inspection and penalty costs. The solution is shown
to be unique and optimum. However, closed form
expressions for the optimum values are not obtained
and numerical search algorithms such as
Gauss-Seidel’s iterative method is used. Numerical
results show that the expected profit decreases as o,
increases, and the process mean and screening limits
on the correlated variable tend to increase as o,
increases. Expected vprofit for the two-stage
screening procedure is somewhat greater than that
of the single-stage screening procedures.

Appendix A : Derivation of Equation (2)

The expected profit per item is given by

B(Pp) = [ [, (a—b—c=cOftx, s
+ f: f_:(a—b—cy— ¢x—d )R x, ydydx
+ f:l j:o(a_ b— cy—c,— ¢, )Ax, y)dydx
TR &
+ L,? f_m(?’“b*@— cx— ¢y )R x, y)dvex
+ J_‘*’; J-:( y=b—cy— . )fx, Y)dvdx

(A.1)

where 7(x, v} is the joint density function of X and
Y.
Using the following refationships

J70" fuvdsar = w(-o,m -0, (AD
f:f:ﬂx'y)dydx = ¥(— 8. —7:p), (A.3)
J-:f:oﬂx.y)dydx =§T(_82s_7?;_10) (A4)

had @.(_61,7} ;_p)
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f: f;f(x,y)dydx =¥(8,—n—0)

(A.5)
- @-('—82,‘"7}; _.0);
equation (A.1} can be rewritten as
E(Py) = a®(=8)+ A (6, —n —0)
— (8, — 5 —0))—dW—8.7 —p) (A0

+ e {@{8) — @(8.)} + A ¥(8,, 7:0)
+ (8, —7; — o)} +{(b+ c(L—70,)) — ¢,

Appendix B : Derivation of Equations (3)~(5)

Using the following relationships

AW(s,. 7038, = m(v"’l—‘?‘")qﬁ(al)
8 —
1—

(B.1}

(B.2)

QW 8y, mi0)/dn = @( )m

the first derivatives of E( P ;) with respect to 7
and &, i=1,2, are

oE(Pp) _, B g o S0
ol L O b rerd B b
02 — 70
- p(—m— B.
@(—n d@(vl—_ﬂzr) (B.3)
- ¢(— 9} — coy
eE(Pr) 7— 810
e =(d+y—a)@(m)¢(51)+cy¢(é‘l),
(B.4)
GE{P7) _ 77"‘3240
—Cy¢(32)
The second partial derivatives of F(P;) with
respect oy and &, i=1,2, at (5", 47,8} ) are

azEa;fr) _ E/a—_y),zg[qs( \/612_— zs;)

( )]s‘b(—v) 750 B

( 61”" )qﬁ( »
J E(PT) (g~ d—»p p— 4,0
o ~d= ¢( = )qb(ao (B.7)
3°E(Py) _ (r—ayp —nt 329



Determination of Optimum Target Values for Production --- 7

3°E(Pr) _ {d+r—a 7—8,0
s~ A e ®9)

EPr) _ (y—g) [ 7t e
an 98, ‘5 =2 ¢(7?pz_)¢(52) (B.10)

3*E(Pr)
m =90 {(B.11)

Since d> g >y, it is clear that 3E(P/e7 < 1,
S*E(Pr)/edt <0, 3°E(P7)/38} <0, at{y",87,87)
and therefore the Hessian matrix is negative definite.
Hence, (5", 87,3) represents a maximum point of
equation (2). Setting the partial derivatives of
E(P;) with respect toz and §;, 7=1,2, to zero,
we obtain the equations {3)~(5).
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