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Ostrowski’s Inequality for Monotonous Mappings and
Applications

Sever Silvestru Dragomir

Abstract

An inequality of Ostrowski’s type for monotonous nondecreasing mappings is
given. Applications for quadrature formulas are pointed out.

1 Introduction

The following theorem contains the integral inequality which is known in the literature
as Ostrowski’s inequality [4, p. 469).

THEOREM 1.1. Let f: [a,b] — R be a differentiable mapping on (a,b) whose
derivative is bounded on (a,b) and denote || f'llco = SUPe(ap) |f'(t)| < c0. Then for all
z € [a,b] we have the inequality

pe
10— 5= [ s s (5 + ST 16 - 0l e

The constant % is sharp in the sense that it can not be replaced by a smaller one.

In the recent paper [1], S.S. Dragomir has proved the following Ostrowski’s type
inequality for mappings with bounded variation:

THEOREM 1.2. Let u: [a,b] — R be mapping with bounded variation on [a,b).
Then for all = € [a,b], we have the inequality

| [ w0~ u@) 6 —a) 1< b - + o - MW, @1

where V2(u) denotes the total variation of u.
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The constant % is the best possible one.
A corollary of this results is the following inequality for monotonous mappings

COROLLARY 1.3. Let u: [a,b] — R be a monotonous mapping on [a,b]. Then
we have the inequlity

| [ w0t ~ @6~ a) 1< (36— a) + b - 22| 18) - @) |

In this paper we prove an Ostrowski’s type inequality for monotonous nondecreasing
mappings which improves the above result and apply it in obtaining a Riemann’s type
quadrature formula for this class of mappings.

For some similar results for differentiable mappings see the recent papers [2-3] by
Dragomir and Wang.

2 An Inequality for Monotonous Mappings

The following results of Ostrowski’s type holds

THEOREM 2.1. Let u : [a,b] — R be a monotonous nondecreasing mapping on
[a,b]. Then for all z € [a,b], we have the inequality

(2.1) | u(z) ~ 525 Ja ult)dt |

< b—i—g{[Qm — (a+b)ulz) + ] " sgn(t - )u(t)dt)

< 72z~ a)(u(z) - w(a)) + (b - 2)(u(b) - u(z))]
1 Jz- %’—b |
<[5+ J(u(b) ~ u(a)).

2 b—a

All the inequalities in (2.1) are sharp and the constant % is the best possible one.
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Proof. Using the integration by parts formula for Riemann-Stieltjes integral, we
have the identity

(2.2) u(z) ~ 55 fLu(t)dt = 55 [2 p(z, t)dult)

where
__Jt=aift€]a,q]
p(z,1) = {t—bifte (z,8]"

Indeed, we have
/a “(t — a)du(t) = u(z)(z — a) — / " u(t)dt

and
/z " (¢ = b)du(t) = u(z)(b - o) — /x ().

If we add the above two equalities, we get

w(@)(b—a) — / " ()t = / ’ o Hdu(t)

and the identity (2.2) is proved.

Now, assume that An : a = 2§ < 2™ < ... < 2V < 2 = b is a sequence
of divisions with v(A,) — 0 as n — oo, where V(An) = MaXe(o,..n-1}(Z £+)1 — :v(n))

and §Z(.n) € [a:f."), Ez)l] If p : [a,b] — R is continuous on [a,b] and v : [a,b] — R is

monotonous nondecreasing on [a, b], then

| [ p@av@) 1] Jim zps"”)[v W) - (™|

v(Ap)— 0

() (n) ()
<
y(glgqozm ) 1l (@5 ~ o)

(n) (n) (n)
<u(/§l,f§iozlp§ [ (elig) = v(m7)

b
= [ 15(@) | dv(a)
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As u is monotonous nondecreasing on [a, b], and p(z, .) is continuous on the portions,
then using the above inequality we can state that

(2.3) | [2p(z, t)du(t) |< 7 | p(z,t) | dut).

Now, let us observe that
/ablp(x,t)Idu(t):/:|t—a|du(t)+/:|t—b|du(t)
- / *(t - a)du(t) + /z "0 — H)du(t)
= (¢ (0 ~ [ w6~ )l + [ (e

= [2z — (a + b)]u(x) — /z u(t)dt + /: u(t)dt

b
= 22 — (a + b)Ju(z) + L sqn(t — o)u(t)dt.

Using the inequality (2.3) and the identity (2.2) we get the first part of (2.1). Now
let us observe that

[Ib sgn(t — z)u(t)dt = — /z u(t)dt + /: u(t)dt.

a

As u is monotonous nondecreasing on [a, b], we can state that

/: u(t)dt > (z — a)u(a)
and

/ " u(t)dt < (b— z)u(bd)

and then
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b
/a sgn(t — x)u(t)dt < (b — z)u(d) — (z — a)u(a).

Consequently

b
2z — (a + b)]u(z) +/a sgn(t — x)u(t)dt

<[22~ (a + b)Ju(e) + (b - 2)u(b) ~ (= — a)u(a)

= (b= 2)(u(b) — u(z)) + (¢ - o) (u(z) — u(a))

and the second part of (2.1) is proved.
Finally, let us observe that

(b — z)(u(b) — u(z)) + (z — a)(u(z) — u(a))
< max{b — z,z — a}{u(b) — u(z) + u(z) — u(a)]

b—a a+b

=[5+ 2= T2 W) - u(@)

and the inequality (2.1) is thus proved.
Assume that (2.1) holds with a constant C instead of 3, i.e.,

(2.1) | u(z) — 51 [P u(t)dt |

1
b—a

b
< {12~ (a+ BJu(a) + [ sgn(t - DJu(t)dt}

1

(@ = o)(u(z) — u(@)) + (b - ) (u(b) ~ u(z))

IN

ath |

|z -

<0+ ==,

J(u(b) — u(a)).

Consider the mapping up : [a,b] — R given by
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wo(z) = -lifz=a
O T 0tz € (a,)
Puting in (2.1’) v = up and z = a, we get

| u(z) - 525

2 u(t)dt |

= B——i—a{[Qx —(a+ b)]u(w) + /ab sgn(t — x)u(t)dt}

= [z - a)(u(z) - u(@)) + (b - D)(u) ~ u(z)] = 1

—a

< [0+ 522 w) - u(a)) = (C + 1)

which prove the sharpness of the first two inequalities and the fact that C should
not be less than 3. W

The following corollaries are interesting:

COROLLARY 2.2. Let u be as above. Then we have the midpoint inequality:

(2.4) | u(2) — o= [Pu(t)dt |
<3y—= ab sgn(t — a ;_ b)u(t)dt < %[u(b) — u(a)].

Also, we have the following “trapezoid inequality” for monotonous nondecreasing
mappings.

COROLLARY 2.3. Under the above assumptions, we have
(2:5) | M) — P R u(t)dt |< Flu(®) - u(a)).

b—a

Proof. Let us choose in Theorem 2.1, z = a and x = b to obtain

| u(a) - i)-l-—a / (bt < I-)le[—(b — a)u(a) + / (b

and
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. [(b - a)ut) - / " w(t)di).

]u(b)—ﬁlbu

Summing the above inequalities, using the triangle inequality and deviding by 2,we
get the desired inequality (2.5). R

3 A Qadrature Formula

Let I:a=20 <z < .. <Zp_1 <zp, =0 be a division of the interval [a,b] and
§i € [z, 2i11) (1 =0,...,mn — 1) a sequence of intermediate points for I,,. Construct the
Riemann sums

n—1
-an(f, In, E) = Z f(é‘z)hz
=0
where hi = T4 — Iy

We have the following quadrature formula

THEOREM 3.1. Let f: [a,b] — R be a monotonous nondecreasing mapping on
la,b] and I,,€; (i = 0,...,n — 1) be as above. Then we have the Riemann quadrature

formula

/ab f(:l,‘)dx = Rp(f, In, ﬁ) + Wi (f, I, €) (3.1)

where the remainder satisfies the estimation

n-—1
| Walf,Ins8) IS 23 (6 - 2504 (e + /S(t Lo, &) f(t)dt

=0

n—1
< DOlE = z)(f (&) = F(20)) + (i1 — €)(f(@ir1) — F(E))]
=0

< s [shor | &~ ZEI ) - f(a)
1=0,...,n
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1 T; +x
<[Gr(h)+ sup |§ - =]

1=0,...,n

(f(0) = f(a)) S v(R)(£(b) - f(a)) (3.2)

yooey

S(t’In, E) =Sgn(t - C’l)zf te [xia (L‘i+1)(i =0,..,n— 1)

Proof. Apply Theorem 2.1 on the interval [z;, z;11] to get

T; + -731+1

[ fede = pleom 1< 206 - 25 ) + [T st h o

< (& —zi)(f(&) — f(@0) + (ziv1 = &) (F(ziv1) = F(E))

1 +
~hi+ | fz’ T $z+1

<l I(f@isa) = F(29)- (3:3)

Summing over i from 0 to n —1 and using the generalized triangle inequality we get

n—1 Tig1
[ Wal £ L@ IS X1 [ @)z — £(Ehs |
1=0

T

<256 - ”””L‘”’“)f(xs,wr [ s rerea

=0

< Z[ i — @) (f(&) — f(@i) + (@1 — &) (f(mir1) — f(€:))]

=0

< Z[ hit | & = T 1 ((zi4) - f(@2)
i=0
< sup [shet] g - TEETEL Z(f(wm) f(@)

1=0,...,n

1 T+ T
= sup [shit | & — = |

i=0,...,n

(£(b) = f(a)).
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The fourth inequality follows by the properties of sup(.).
Now, as

ZT; + Tyl 1
|§i_'T+ I< Ehi

for all §; € [zi,zi+1)(i =0, ...,n — 1) the last part of (3.2) is also proved. W

COROLLARY 3.2. Let f,I, be as in Theorem 3.1. Then we have the midpoint
rule

b
/a f(z)dz = Mu(f, In) + Su(f, In)

where
e S
Mu(f, L) =) f(l—fr')hz'
i=0
and the remainder S,(f,I,) satisfies the estimation

b 1
| Sulf,I) < [ wn)F(2)at < Gv(A)(FE) = £(a)

where

Ti + Titl, . .
u(l,) = sgn(t — —2—+1-)zf t € [z, zi+1)(E=0,...,n —1).
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