
An Ostrowski Type Inequality for Weighted

Mappings with Bounded Second Derivatives

J. Roumeliotis, P. Cerone, S.S. Dragomir

J. KSIAM Vol.3, No.2, 107-119, 1999

Abstract

A weighted integral inequality of Ostrowski type for mappings whose second

derivatives are bounded is proved. The inequality is extended to account for ap-

plications in numerical integration.

1 Introduction

In 1938, Ostrowski (see for example Mitrinovi�c et al. (1994, p. 468)) proved the follow-

ing inequality

THEOREM 1.1. Let f : I � R ! R be a di�erentiable mapping in Io (Io is the

interior of I), and let a; b 2 Io with a < b. If f 0 : (a; b) ! R is bounded on (a; b), i.e.,

kf 0k1 := sup
t2(a;b)

jf 0(t)j <1, then we have the inequality:

���� 1

b� a

Z
b

a

f(t) dt� f(x)

���� �
"
1

4
+

�
x� a+b

2

�2
(b� a)2

#
(b� a)kf 0k1 (1.1)

for all x 2 (a; b).

The constant 1
4 is sharp in the sense that it cannot be replaced by a smaller one.

A similar result for twice di�erentiable mappings (Cerone et al. 1998) is given

below.

THEOREM 1.2. Let f : [a; b] ! R be a twice di�erentiable mapping such that f 00 :

(a; b) ! R is bounded on (a,b), i.e. kf 00k1 := sup
t2(a;b)

jf 00(t)j < 1. Then we have the

inequality���� 1

b� a

Z
b

a

f(t) dt� f(x) +

�
x� a+ b

2

�
f 0(x)

����
�
"
1

24
+

�
x� a+b

2

�2
2(b� a)2

#
(b� a)2kf 00k1 (1.2)

for all x 2 [a; b].
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In this paper, we extend the above result and develop an Ostrowski-type inequality

for weighted integrals. Applications to special weight functions and numerical integra-

tion are investigated.

2 Preliminaries

In the next section weighted (or product) integral inequalities are constructed. The

weight function (or density) is assumed to be non-negative and integrable over its

entire domain. The following generic quantitative measures of the weight are de�ned.

De�nition 2.1. Let w : (a; b)! [0;1) be an integrable function, i.e.
R
b

a
w(t) dt <1,

then de�ne

mi(a; b) =

Z
b

a

tiw(t) dt; i = 0; 1; : : : (2.1)

as the ith moment of w.

De�nition 2.2. De�ne the mean of the interval [a; b] with respect to the density w as

�(a; b) =
m1(a; b)

m0(a; b)
(2.2)

and the variance by

�2(a; b) =
m2(a; b)

m0(a; b)
� �2(a; b): (2.3)

3 The Results

3.1 1-point inequality

THEOREM 3.1. Let f; w : (a; b) ! R be two mappings on (a; b) with the following

properties:

1. sup
t2(a;b)

jf 00(t)j <1,

2. w(t) � 0 8t 2 (a; b),

3.
R
b

a
w(t) dt <1,

then the following inequalities hold���� 1

m0(a; b)

Z
b

a

w(t)f(t) dt�f(x) +
�
x� �(a; b)

�
f 0(x)

����
� kf 00k1

2

h�
x� �(a; b)

�2
+ �2(a; b)

i
(3.1)

� kf 00k1
2

�����x� a+ b

2

����+ b� a

2

�2

(3.2)

for all x 2 [a; b].
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Proof. De�ne the mapping K(�; �) : [a; b]2 ! R by

K(x; t) :=

(R
t

a
(t� u)w(u) du; a � t � x;R
t

b
(t� u)w(u) du; x < t � b:

Integrating by parts gives

Z
b

a

K(x; t)f 00(t) dt =

Z
x

a

Z
t

a

(t� u)w(u)f 00(t) dudt+

Z
b

x

Z
t

b

(t� u)w(u)f 00(t) dudt

= f 0(x)

Z
b

a

(x� u)w(u) du

�
Z

x

a

Z
t

a

(t� u)w(u)f 0(t) dudt�
Z

b

x

Z
t

b

(t� u)w(u)f 0(t) dudt

=

Z
b

a

w(t)f(t) dt + f 0(x)

Z
b

a

(x� u)w(u) du � f(x)

Z
b

a

w(u) du

providing the identity

Z
b

a

K(x; t)f 00(t) dt

=

Z
b

a

w(t)f(t) dt�m0(a; b)f(x) +m0(a; b)
�
x� �(a; b)

�
f 0(x) (3.3)

that is valid for all x 2 [a; b].

Now taking the modulus of (3.3) we have,

����
Z

b

a

w(t)f(t) dt �m0(a; b)f(x) +m0(a; b)
�
x� �(a; b)

�
f 0(x)

����
=

����
Z

b

a

K(x; t)f 00(t) dt

����
� kf 00k1

Z
b

a

jK(x; t)j dt

= kf 00k1
�Z

x

a

Z
t

a

(t� u)w(u) dudt +

Z
b

x

Z
t

b

(t� u)w(u) dudt

�

=
kf 00k1

2

Z
b

a

(x� t)2w(t) dt: (3.4)

The last line being computed by reversing the order of integration and evaluating

the inner integrals. To obtain the desired result (3.1) observe that

Z
b

a

(x� t)2w(t) dt = m0(a; b)
h�
x� �(a; b)

�2
+ �2(a; b)

i
:
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To obtain (3.2) note that

Z
b

a

(x� t)2 dt � sup
t2[a;b]

(x� t)2mo(a; b)

= maxf(x� a)2; (x� b)2gm0(a; b)

=
1

2

�
(x� a)2 + (x� b)2 +

��(x� a)2 � (x� b)2
���m0(a; b)

=

�����x� a+ b

2

����+ b� a

2

�2

m0(a; b)

which upon susbitution into (3.4) furnishes the result. �

Note also that the inequality (3.1) is valid even for unbounded w or interval [a; b].

This is not the case with (1.2).

COROLLARY 3.2. The inequality (3.1) is minimized at x = �(a; b) producing the

generalized \mid-point" inequality

���� 1

m0(a; b)

Z
b

a

w(t)f(t) dt � f(�(a; b))

���� � kf 00k1
�2(a; b)

2
: (3.5)

Proof. Substituting �(a; b) for x in (3.1) produces the desired result. Note that

x = �(a; b) not only minimizes the bound of the inequality (3.1), but also causes the

derivative term to vanish. �

The optimal point (2.2) can be interpreted in many ways. In a physical context,

�(a; b) represents the centre of mass of a one dimensional rod with mass density w.

Equivalently, this point can be viewed as that which minimizes the error variance for

the probability density w (see Barnett et al. (1995) for an application). Finally (2.2) is

also the Gauss node point for a one-point rule (Stroud and Secrest 1966). The bound

in (3.5) is directly proportional to the variance of the density w. So that the tightest

bound is achieved by sampling at the mean point of the interval (a; b), while its value

is given by the variance.

3.2 2-point inequality

Here a two point analogy of (3.1) is developed where the result is extended to create an

inequality with two independent parameters x1 and x2. This is mainly used (Section

5) to �nd an optimal grid for composite weighted-quadrature rules.

THEOREM 3.3. Let the conditions of Theorem 3.1 hold, then the following 2-point
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inequality is obtained����
Z

b

a

w(t)f(t) dt �m0(a; �)f(x1) +m0(a; �)
�
x1 � �(a; �)

�
f 0(x1)

�m0(�; b)f(x2) +m0(�; b)
�
x2 � �(�; b)

�
f 0(x2)

����
� kf 00k1

2

�
m0(a; �)

h�
x1 � �(a; �)

�2
+ �2(a; �)

i

+m0(�; b)
h�
x2 � �(�; b)

�2
+ �2(�; b)

i�
(3.6)

for all a � x1 < � < x2 � b.

Proof. De�ne the mapping K(�; �; �; �) : [a; b]4 ! R by

K(x1; x2; �; t) :=

8><
>:
R
t

a
(t� u)w(u) du; a � t � x1;R
t

�
(t� u)w(u) du; x1 < t; � < x2;R
t

b
(t� u)w(u) du; x2 � t � b:

With this kernel, the proof is almost identical to that of Theorem 3.1.

Integrating by parts produces the integral identityZ
b

a

K(x1; x2; �; t)f
00(t) dt

=

Z
b

a

w(t)f(t) dt�m0(a; �)f(x1) +m0(a; b)
�
x� �(a; �)

�
f 0(x1)

�m0(�; b)f(x2) +m0(�; b)
�
x� �(�; b)

�
f 0(x2): (3.7)

Re-arranging and taking bounds produces the result (3.6). �

COROLLARY 3.4. The optimal location of the points x1; x2 and � satisfy

x1 = �(a; �); x2 = �(�; b); � =
�(a; �) + �(�; b)

2
(3.8)

Proof. By inspection of the right hand side of (3.6) it is obvious that choosing

x1 = �(a; �) and x2 = �(�; b) (3.9)

minimizes this quantity. To �nd the optimal value for � write the expression in braces

in (3.6) as

2

Z
b

a

jK(x1; x2; �; t)j dt = m0(a; �)
h�
x1 � �(a; �)

�2
+ �2(a; �)

i
+m0(�; b)

h�
x2 � �(�; b)

�2
+ �2(�; b)

i
=

Z
�

a

(x1 � t)2w(t) dt +

Z
b

�

(x2 � t)2w(t) dt: (3.10)
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Substituting (3.9) into the right hand side of (3.10) and di�erentiating with respect to

� gives

d

d�

Z
b

a

jK(�(a; �); �(�; b); �; t)j dt =
�
�(�; b)� �(�; a)

��
� � �(a; �) + �(�; b)

2

�
w(�):

Assuming w(�) 6= 0, then this equation possesses only one root. A minimum exists at

this root since (3.10) is convex, and so the corollary is proved. �

Equation (3.8) shows not only where sampling should occur within each subinterval

(i.e. x1 and x2), but how the domain should be divided to make up these subintervals

(�).

4 Some Weighted Integral Inequalities

Integration with weight functions are used in countless mathematical problems. Two

main areas are: (i) approximation theory and spectral analysis and (ii) statistical anal-

ysis and the theory of distributions.

In this section (3.1) is evaluated for the more popular weight functions. In each

case (1.2) cannot be used since the weight w(t) or the interval (b � a) is unbounded.

The optimal point (2.2) is easily identi�ed.

4.1 Uniform (Legendre)

Substituting w(t) = 1 into (2.2) and (2.3) gives

�(a; b) =

R
b

a
t dtR

b

a
dt

=
a+ b

2
(4.1)

and

�2(a; b) =

R
b

a
t2 dtR
b

a
dt

�
�
a+ b

2

�2

=
(b� a)2

12

respectively. Substituting into (3.1) produces (1.2). Note that the interval mean is

simply the midpoint (4.1).

4.2 Logarithm

This weight is present in many physical problems; the main body of which exhibit

some axial symmetry. Special logarithmic rules are used extensively in the Boundary

Element Method popularized by Brebbia (see for example Brebbia and Dominguez

(1989)). Some applications of which include bubble cavitation (Blake and Gibson

1987) and viscous drop deformation (Rallison and Acrivos (1978) and more recently by

Roumeliotis et al. (1997)).

With w(t) = ln(1=t), a = 0, b = 1, (2.2) and (2.3) are

�(0; 1) =

R 1
0 t ln(1=t) dtR 1
0 ln(1=t) dt

=
1

4
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and

�2(0; 1) =

R 1
0 t2 ln(1=t) dtR 1
0 ln(1=t) dt

�
�
1

4

�2

=
7

144

respectively. Substituting into (3.1) gives

����
Z 1

0
ln(1=t)f(t) dt � f(x) +

�
x� 1

4

�
f 0(x)

���� � kf 00k1
2

 
7

144
+

�
x� 1

4

�2
!
:

The optimal point

x = �(0; 1) =
1

4

is closer to the origin than the midpoint (4.1) reecting the strength of the log singu-

larity.

4.3 Jacobi

Substituting w(t) = 1=
p
t, a = 0, b = 1 into (2.2) and (2.3) gives

�(0; 1) =

R 1
0

p
t dtR 1

0 1=
p
t dt

=
1

3

and

�2(0; 1) =

R 1
0 t
p
t dtR 1

0 1=
p
t dt

�
�
1

3

�2

=
4

45

respectively. Hence, the inequality for a Jacobi weight is

����12
Z 1

0

f(t)p
t
dt� f(x) +

�
x� 1

3

�
f 0(x)

���� � kf 00k1
2

 
4

45
+

�
x� 1

3

�2
!
:

The optimal point

x = �(0; 1) =
1

3

is again shifted to the left of the mid-point due to the t�1=2 singularity at the origin.

4.4 Chebyshev

The mean and variance for the Chebyshev weight w(t) = 1=
p
1� t2, a = �1; b = 1 are

�(�1; 1) =
R 1
�1 t=

p
1� t2 dtR 1

�1 1=
p
1� t2 dt

= 0

and

�2(�1; 1) =
R 1
�1 t

2
p
1� t2 dtR 1

�1 1=
p
1� t2 dt

� 02 =
1

2
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respectively. Hence, the inequality corresponding to the Chebyshev weight is���� 1�
Z 1

�1

f(t)p
1� t2

dt� f(x) + xf 0(x)

���� � kf 00k1
2

�
1

2
+ x2

�
:

The optimal point

x = �(�1; 1) = 0

is at the mid-point of the interval reecting the symmetry of the Chebyshev weight

over its interval.

4.5 Laguerre

The conditions in Theorem 3.1 are not violated if the integral domain is in�nite. The

Laguerre weight w(t) = e�t is de�ned for positive values, t 2 [0;1). The mean and

variance of the Laguerre weight are

�(0;1) =

R
1

0 te�t dtR
1

0 e�t dt
= 1

and

�2(0;1) =

R
1

0 t2e�t dtR
1

0 e�t dt
� 12 = 1

respectively.

The appropriate inequality is����
Z
1

0
e�tf(t) dt� f(x) + (x� 1)f 0(x)

���� � kf 00k1
2

�
1 + (x� 1)2

�
;

from which the optimal sample point of x = 1 may be deduced.

4.6 Hermite

Finally, the Hermite weight is w(t) = e�t2 de�ned over the entire real line. The mean

and variance for this weight are

�(�1;1) =

R
1

�1
te�t2 dtR

1

�1
e�t2 dt

= 0

and

�2(�1;1) =

R
1

�1
t2e�t2 dtR

1

�1
e�t2 dt

� 02 =
1

2

respectively.

The inequality from Theorem 3.1 with the Hermite weight function is thus���� 1p
�

Z
1

�1

e�t2f(t) dt� f(x) + xf 0(x)

���� � kf 00k1
2

�
1

2
+ x2

�
;

which results in an optimal sampling point of x = 0.
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5 Application in Numerical Integration

De�ne a grid In : a = �0 < �1 < � � � < �n�1 < �n = b on the interval [a,b], with

xi 2 [�i; �i+1] for i = 0; 1; : : : ; n � 1. The following quadrature formulae for weighted

integrals are obtained.

THEOREM 5.1. Let the conditions in Theorem 3.1 hold. The following weighted

quadrature rule holds Z
b

a

w(t)f(t) dt = A(f; �;x) +R(f; �;x) (5.1)

where

A(f; �;x) =

n�1X
i=0

�
hif(xi)� hi(xi � �i)f

0(xi)
�

and

jR(f; �;x)j � kf 00k1
2

n�1X
i=0

�
(xi � �i)

2 + �2i
�
hi: (5.2)

The parameters hi, �i and �2
i
are given by

hi = m0(�i; �i+1); �i = �(�i; �i+1); and �2i = �2(�i; �i+1)

respectively.

Proof. Apply Theorem 3.1 over the interval [�i; �i+1] with x = xi to obtain

����
Z

�i+1

�i

w(t)f(t) dt� hif(xi) + hi(xi � �i)f
0(xi)

����
� kf 00k1

2
hi
�
(xi � �i)

2 + �2i
�
:

Summing over i from 0 to n� 1 and using the triangle inequality produces the desired

result. �

COROLLARY 5.2. The optimal location of the points xi, i = 0; 1; 2; : : : ; n� 1, and

grid distribution In satisfy

xi = �i; i = 0; 1; : : : ; n� 1 and (5.3)

�i =
�i�1 + �i

2
; i = 1; 2; : : : ; n� 1; (5.4)

producing the composite generalized mid-point rule for weighted integrals

Z
b

a

w(t)f(t) dt =

n�1X
i=0

hif(xi) +R(f; �; n) (5.5)
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where the remainder is bounded by

jR(f; �; n)j � kf 00k1
2

n�1X
i=0

hi�
2
i (5.6)

Proof. The proof follows that of Corollary 3.4 where it is observed that the minimum

bound (5.2) will occur at xi = �i. Di�erentiating the right hand side of (5.2) gives

d

d�i

n�1X
j=0

�
(xj � �j)

2 + �2j
�
hj = 2w(�i)(xi � xi�1)

�
�i �

xi�1 + xi

2

�
:

Inspection of the second derivative at the root reveals that the stationary point is a

minimum and hence the result is proved. �
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6 Numerical Results

In this section, for illustratration, the quadrature rule of Section 5 is used on the integral

Z 1

0
100t ln(1=t) cos(4�t) dt = �1:972189325199166 (6.1)

This is evaluated using the following three rules:

(1) the composite mid-point rule, where the grid has a uniform step-size and the node

is simply the mid-point of each sub-interval,

(2) the composite generalized mid-point rule (5.1). The grid, In, is uniform and the

nodes are the mean point of each sub-interval (5.3),

(3) equation (5.5) where the grid is distributed according to (5.4) and the nodes are

the sub-interval means (5.3).

Table 1 shows the numerical error of each method for an increasing number of sample

points. For a uniform grid, it can be seen that changing the location of the sampling

point from the midpoint [method (1)] to the mean point [method (2)] roughly doubles

the accuracy. Changing the grid distribution as well as the node point [method (3)] from

the composite mid-point rule [method (1)] increases the accuracy by approximately an

order of magnitude. It is important to note that the nodes and weights for method

(3) can be easily calculated numerically using an iterative scheme. For example on a

Pentium-90 personal computer, with n = 64, calculating (5.3) and (5.4) took close to

37 seconds.

Note that equations (5.3) and (5.4) are quite general in nature and only rely on the

weight insofar as knowledge of the �rst two moments is required. This contrasts with

Gaussian quadrature where for an n point rule, the �rst n+1 moments are needed (or

equivalently the 2n + 1 coe�cients of the continued fraction expansion (Rutishauser

1962b; Rutishauser 1962a)) to construct the appropriate orthogonal polynomial and

then a root-�nding procedure is called to �nd the abscissae (Atkinson 1989). This

n Error (1) Error (2) Error (3) Error ratio (3) Bound ratio (3)

4 1.97(0) 2.38(0) 2.48(0) { {

8 3.41(-1) 2.93(-1) 2.35(-1) 10.56 3.90

16 8.63(-2) 5.68(-2) 2.62(-2) 8.97 3.95

32 2.37(-2) 1.31(-2) 4.34(-3) 6.04 3.97

64 6.58(-3) 3.20 (-3) 9.34(-4) 4.65 3.99

128 1.82(-3) 7.94(-4) 2.23(-4) 4.18 3.99

256 4.98(-4) 1.98(-4) 5.51(-5) 4.05 4.00

Table 1: The error in evaluating (6.1) under di�erent quadrature rules. The parameter

n is the number of sample points.
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procedure, of course, can be greatly simpli�ed for the more well known weight functions

(Gautschi 1994).

The second last column of Table 1 shows the ratio of the numerical errors for method

(3) and the last column the ratio of the theoretical error bound (5.5)

Bound ratio (3) =
jR(f; �; n=2)j
jR(f; �; n)j : (6.2)

As n increases the numerical ratio approaches the theoretical one. The theoretical ratio

is consistently close to 4. This value suggests an asymptotic form of the error bound

jR(f; �; n)j � O

�
1

n2

�
(6.3)

for the log weight. Similiar results have been obtained for the other weights of Section

4. This is consistent with mid-point type rules and it is anticipated that developing

other product rules, for example a generalized trapezoidal or Simpsons rule, will yield

more accurate results.
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