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AN ANALYSIS OF MMPP/D,,D>/1/B QUEUE FOR
TRAFFIC SHAPING OF VOICE IN ATM NETWORK

Doo IL CHoI

ABSTRACT. Recently in telecommunication, BISDN ( Broadband Integrated Service Dig-
ital Network ) has received considerable attention for its capability of providing a common
interface for future communication needs including voice, data and video. Since all in-
formation in BISDN are statistically multiplexed and are transported in high speed by
means of discrete units of 53-octet ATM ( asynchronous Transfer Mode ) cells, appropri-
ate traffic control needs. For traffic shaping of voice, the output cell discarding scheme
has been proposed. We analyze the scheme with a MM PP/D1, Dy /1/B queueing system
to obtain performance measures such as loss probability and waiting time distribution.

1. INTRODUCTION

The Asynchronous Transfer Mode ( ATM ) has been selected as a mode of trans-
mission and switching in the BISDN ( Broadband Integrated Service Digital Networks
), because of its efficiency and flexibility. The ATM is based on asynchronous time
division multiplexing and fast packet switching technology. In ATM networks, all
information are transmitted in a fixed-size packet called cell which has a 48-octet in-
formation field and 5-octet header. The header contains various information required
to transfer the information field across the network.

The ATM networks support diverse services which require the different Quality of
Service ( QoS ) such as voice, data and video. Since user terminals in BISDN generate
cells only when they have information to transmit and these cells are statistically
multiplexed, the traffic stream fluctuates uncertainly. Therefore, traffics such as voice
and video have properties of time-correlation and burstiness. This characteristics of
traffic may cause to congestion of network, so appropriate traffic control needs.

Voice traffic has delay-sensitive but loss-insensitive characteristic. An effective
method to support voice traffic in ATM networks is use of output cell discarding (CD)
scheme. The output CD scheme operates as follows: Voice information is stored in pair
of cells to separate the more significant and less significant bits. The cell containing the
more significant bits is identified as high priority cell ( i.e. nondiscardable in network
) and the cell containing the less significant bits is identified as low priority cell ( i.e.
discardable in network ). The low-priority cells may be discarded during congestion of
network. This output CD scheme results in significant transmission bandwidth saving
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and resiliency of the network during congestion. Therefore, the spare bandwidth ob-
tained by CD scheme can be used to support different traffic such as data and video.
Also, this smoothing effect of voice helps in avoiding buffer overflow[2,3].

To model the bursty voice traffic, we use a Markov-modulated Poisson process(MMPP)
in pair of cells. We put a threshold on buffer considering congestion of network. If
the buffer occupancy at transmission epoch is less than or equal to the threshold, the
service time is D7 ( the transmission time of cell pair ). Otherwise, the service time
is Do(= D;/2, because low-priority cell is discarded ). We assume a finite capacity (
B ) queue for practical applications. Then, the output CD scheme is modeled by the
queueing system M M PP/D4, D5/1/B with one threshold. In following section, we an-
alyze the queueing model by using the embedded Markov chain and the supplementary
variable method.

2. DESCRIPTION OF MODEL AND MMPP

A Markov-modulated Poisson process(MMPP) has been used to model the video
and the packetized voice traffic. The MMPP can be constructed by a Poisson process
with a rate that varies according to an N-state irreducible continuous-time Markov
process {J(t),t > 0} (called the underlying Markov process). When the underlying
Markov process is in state ¢ at time ¢, arrivals occur according to a Poisson process
of rate A;. The sojourn time of the state 7 follows exponential distribution with mean

1

—. Then, the MMPP is characterized by the Markov process {J(t),t > 0} with the
0

transition rate matrix @ and the arrival rate matrix A = diag (A1, A2, -, An). The
transition rate matrix () is as follows:

—01 012 O1N
Q 021 —09 ... 09N
ON1 ON2 ... —ON

The steady-state probability vector II of the underlying Markov process {J(t),t > 0}
is given by solving the following equations

Q =0, Ile=1, e=(1,1,---,1)7T.

The arriving cells in pair are first queued in a buffer of finite capacity B in unit of pair
of cells. Cells arriving when the buffer is full are lost, and cell pairs in buffer are served
on the first-come first-service basis.

Introduce the notations

M (t) =the number of cell pairs arriving during the interval (0, ¢],
J(t) =the state of the underlying Markov process at time ¢.

Now we define the conditional probabilities

pij(n,t) = P{M(t) = n,J(t) = j|{M(0)=0,J(0) =4}, n>0, 1<j<N.
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Then, it is easily shown that the N x N matrix of probabilities P(n,t) = (p; j(n,t))i1<i j<N,
has the probability generating function

Blst) = 3 P(n,0)s", |4 <1,
n=0
— eR(z)t,
where R(z) = Q + (z — 1)A.

3. ANALYSIS OF QUEUE LENGTH DISTRIBUTION

3.1 The queue length distribution at transmission epochs
Introduce the notations

T, = the n-th service completion epoch, n>1, 75 =0,

N,, = the queue length at time 7,4+,
J, = the state of the underlying Markov process at time 7, + .
Then, the process {(N,, J,),n > 0} forms a Markov chain with finite state space {0, 1,

-, B—1}x{1,2,--- ,N}.
Define the limiting probabilities =3 ; and its probability vectors as

Tp; = lim P{N, =k, J, =i},

—00

z 2 ($07$17' e 7$B—1) with £ ($k717$k,27' e 7$k,N)-

The transition probability matrix @, of the Markov chain {(N,, J,,),n > 0} is given
by

Ay Ay Ay o AL A AL, ... Ap, Ap,
Ay Ay Ay ... Ap, 1 Ap, Ap 41 ... Ap_, Ap_y
0 Ay Ay ... Ap,_» Ap,_1 Az, ... Ap_s Ap_s
Ql — 0 0 0 . Al Az A3 - AB—Ll Z_B—Ll-l—l
0 0 0 ... A Ay Ay ... Ap_p,_1 Ap_r,
0o 0 0 ... 0 By Bi ... Bp_r,—» Bp_r,_1
0o 0 0 ... 0 0 0 B, B;
0o 0 0 ... 0 0 0 By B

where the blocks Ay, By, A;C,Zk,ﬁk, and A, are as following:

Ay = P(k,D1), Byp=P(k,Ds), A= ZA”’ By = ZB"’
n=~k n==k

Aj = / P(0,)AdtAL = (A — Q) 'AA,, A =) A,
0 n=~k
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The steady-state probability vector = of the Markov chain {(N,,, J,),n > 0} is obtained
from the equations o
xQ, = =, ze = 1.

3.2 The queue length distribution at an arbitrary time
In this subsection we derive the queue length distribution at an arbitrary time. Let
N(t) be the queue length ( including the cell in service ) at time ¢.

1 if the service time of the cell is by D; at time ¢,

R(t) = {

2 if the service time of the cell is by D5 at time £.

and
- { 0 if the server is idle ,

1 if the server is busy.

Define the limiting probabilities

t—00
Yp = lim P{N(t) =n,{ =1}, n > 1.

t—o00

First we compute the vector y, that the system is idle. Analogously to Choi[l], we
have

(1) Yo = glxom_@—l,

where C1 = 2o(A — Q)" te+ Dy + (D1 — Ds) ZLl o Tne. Let T and T are the respective

n—=
remaining and elapsed service time for the cell in service. In order to obtain the

queue length distribution y,(n > 1) at arbitrary time, we define the joint probability
distribution of the queue length and the remaining service time at arbitrary time 7.

oy (n,j, t)dt = P{N(1) =n,J(1) = 5, R(T) = r,t <T < t +dt,& = 1},

and its Laplace transform and the vectors

o0
ot (n,j,s) = / e~ ap(n,j, t)dt,
0

a,’f(n,s):(a,’f(n,l,s),--- ,a:(n,N,s)), TZI,Q,

a*(n,s) = aj(n,s)+ as(n,s).

We furthermore define the conditional probability G,(n,j1,j2,t) dt(r = 1,2) and its
Laplace transform

Br(n, g1, 42, t)dt = P{X(T) =n,J(T +T) = jo, R(T +T) =,
t<T <t4dt, & =11J; = j1},

0o
ﬁ:(najlaj%s) = / €_St,3,«(n,j1,j2,t)dt,
0

/8:(”’ 3) = (ﬁ:(najlaj% 3))1§j1,j2§N,
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where x(7') is the number of cells arriving during the time T'. Then, the vectors o (n, )
can be represented as the following equations:

(2)
min(n,Lq)

ai(n5) = GHeo(d~ @A (- L)+ Y mfi(n k)
k=1

a{(B,s): [ﬂﬂo(A Q)M Z 51m8}+zxk{ Z pr(n =k, s)}l,

m=B-1 m=B-k

(5) as(n,s) = —== Z iP5 (n —k,s), Li+1<n<B-1,

We finally obtain that

(7)
a*(n,s) = aj(n,s) + as(n,s),
10)11 [Zo(A — Q)" AB (n — 1, 5) +kzlxkﬁl —k,s)], 1<n < Ly,
Dy )
G oA = Q)T AB (n — 1) +Zxkﬂl ,5)]
Dy .
= + = Z $k/82(n_k78)7 L1+1STL§B—1,
D p=r,41
D oo
o lmo(h = @)1 ﬁlms}+2xk{ > Bimy
1 m=B-1 m=B—k
D B-1 00
o 2wl Y Ams)) n=B
L L y=L.41  m=B—k

In order to obtain 3}(n,s)(r = 1,2), we consider the following equation

o0
(8) Z BI (n’ S)Zn _ E[e—s’f“eR(z)’f"] _ eR(z)DlE[e—(sI-}-R(z))T]’
~ N . 1 1— —sD;
where D; =T + T. Since E[e=*T] = 0D1 e—StD_ldt = 3671)1’
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Y Biln,s)2" = MO — e CIFREID[(5] 4 R(2))Dy) 7!

(9) — Dil[eR(Z)D1 _ e—leI](sI + R(Z))_l

i A2 = iP(n,Dl)zn = eR()D1,
n=0 n=0

Substituting above equation to (9) we obtain

Zﬂl n,s) D1 ZA 2" — e DL (sI + R(2)) !
n=0
Dl ZA 2" _SDll][Z Ry (s)z
ZZAkRn i ( Ze_SDlR

n=0 k=0
where R,,(s) = (s[ — A + Q)_l[ (A —sI —Q)~1]". Thus, B (n,s) is given by

B1(n,s) ZA Rou_m(s) — e *P1R,(s)].

It is known that

Similarly, we can obtain 55 (n, s) as followmg

B3 (n.s) 92 ZB By (s) = =" Ry (s)]

Substituting g7 (n, s) and 33(n, s) to a*(n, s), we obtain

(10)
a*(n,s)
( 1 n—1 n n—k
a[IO(A ~Q)TAD  ApRuiom()+ Y 7k Y AmBa_j—m(s)
m=0 k=1 m=0
e P {zg(A = Q)T 'AR,_1(s) + Y _zpRni(s)],  1<n <Ly,
1 n—1 Ly n—k
_ ) glea - QAN AnBRn_1m(s)+ >z Y ApRn_k_m(s)
- m=0 k=1 m=0

L,
e P {zg(A = Q)T AR, _1(s) + Y xRy i(s)

n n—k n
+ Z kaBmRn_k_m(s)—e_SDZ Z TRk ()]

k=L1+1 m=0 k=L1+1
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Finally, we obtain the queue length probabilities y,(n > 1) at an arbitrary time:
For 1 <n < Ly,

Yn =a* (na 0)

:Cil[xo(l\ — Q)_lAmz_::OAm(Q _ A)_l{A(A . Q)—l}n—l—m

n n—k
+ e Y An(@Q - M) THAA — Q)R

k=1 m=0
(11) =Y (@ - N)THAMN - Q)T
k=0
For L1 +1<n<B-1,
=g lro(A = QA Y An(@ - M)A - Q)7
L1 n—~k "
+) mk Y Ap(Q - A)THAN - Q)T R
k=1 m=0

L,
=D m(Q - M) THAN - QT
k=0

n n—k
+ Y @ Y Bu(Q - N)THAA - @)y
k:L1+1 m=0

- Y m@Q-NTHAA - QTR
k=L;+1
and

B-1
yp =11= > yp.
k=0

Using the probabilities y,(n > 0) obtained above, we obtain performance measures
such as loss ( Pioss ) and mean queue length (M,):

Py, = —YBAc _ ypAe M, = iz‘y»e
oss = B = s q= ie.
Zi:o yiAe ITAe i=0

4. ANALYSIS OF WAITING TIME DISTRIBUTION

In order to derive the waiting time distribution of an arbitrary cell pair, let’s tag
a cell pair arriving at time 7. Suppose that there are i(1 < i < B — 1) cell pairs
in the system at time 7. Since the service time may change according to the buffer
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occupancy at service completion epoch, we need to know the time(U*~!) required to
complete transmission of (i — 1) cells at service completion epoch of the cell under
service present at time 7. We first define the hitting time of the level more than the
threshold Lq from the level less than or equal to the threshold L; at service completion
epoch and of the threshold L; from the level more than the threshold L;:

Yiem (41, 42) = inf{n > 1;(Np, Jn) = (m,j2), Ny, € A|(No, Jo) = (k,51)},
k=1, ,Li, m=Li+1,---,B—1,

Zr.1, (41, 52) Zinf{n > 1; (Nn, Jn) = (L1, j2)|(No, Jo) = (k,51)},
k:L1+17"'7B_17 ]-SjlajZSNa

where A = {L; + 1,--- ,B — 1}. Introduce the matrices Pl,P{,Fl, and P, of order
BN to obtain distribution of Y, 1, (j1,72) and Zy 1, (j1, j2):

! ’ ! ’ el

Ay AL Ay o AL A Ap L, ... Ap, Ap_y

Ay Ay Ay ... Ap, 1 A AL ... Apo Ap_;

0 Ao Ay ... Ap, o Ap, 1 A, ... Ap.3 Ap o
P = 0 0 0 C A Ay As . AB—L1 Z_B—L1+1

0 0 0 ... A A, Ay ... Ap.r, 1 Ap_p,

0 0 0 ... 0 0 0o ... 0 0

0 0 0 ... 0 0 0o ... 0 0

0 0 0 ... 0 0 0o ... 0 0

and the matrix P, is the same as the matrix P; except that all rows and columns more
than L; are block 0.

0 0 0 0 0 0
0O ... 0 0 0 ... 0 0
F—O“‘ By B By ... 0 0
1=10 ... 0 By B, ... 0 0
o ... 0 0 0 ... B Ez

0O ... 0 0 0 ... By B

and the matrix P, is the same as the matrix P; except that (L; + 1, L;)-block By in
the matrix P, is replaced by block 0.

Fork=1,--- ,Ly,m =1Ly +1,---,B —1, the event {Yj ,(j1,72) = [} means that the
Markov chain {(N,, J,),n > 0} starting at the state (k, j1) stays in the level less than
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the level L; 4+ 1 during | — 1 transitions and at the [-th transition the Markov chain
hits the state (m, j2). Therefore, we have

P(Yim(j1,j2) = 1} = [PV Pk, 15 m, o),
é flf:,m(jlaj2)7

where [X](k, j1;m, j2) is the (j1, j2)-element of the (k, m)-block of the matrix X. Sim-
ilarly, we obtain distribution for the random variable Z r,, (41, j2)

. -1 , .
P{Z1, (1 d2) = 1} = [P "V P1)(k, js; L, o),
2 gt 0, G1,52),  k=Li+1,---,B—1.

Then, the Laplace transform of the time(U~!) required to complete the service of
(1 — 1) cell pairs is given by
For 1 <i,k < Ly,

Ele™U" " |(Nu, J) = (k, )]

B-1 i—1 L
= Z Z[Z E[e_SUk |(NnaJn) = (kaj)ayk,mo(jajO) = aO]P{Yk,mo(jajO) = a’O}

mo=L1+1 jo ao=l1

+ Z E[e_SUi_IKNnaJn) = (kaj)ayk,mo(jajO) = aO]P{Yk,mo(jajO) = a’O}]

aop =i

B-1 i—1 -
= > DD BV T (Nay ) = (k2 ), Yo (4, d0) = aol 15, (s do)

mo=L1+1 jo ao=1

_s(z 1)D, ka - ] ]0

agz

Conditioning Zm. 1, (j,5) and Yz, (4, 5) at Ele™*U" (N, ) = (k, ), Yimo (G, do) =
ap], the summation below is finite:

Ele™U" " (N, J) = (k, )]
= (A} (k. §) + Bl (k,5))

=0
2WiNs), k=1,2,---,L;, 1<j<N,
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where
‘ B-1
Af(k, j) = e=0=0P %7 kamo o Bikg) 20,
mo:L1+1 ap= 1

i—1 i—1—ag i— 1—25) an—El Lo

Al k,7) Z Z Z Z Z 6_5((i—1)D1+(D2—D1)Ell bn)

m; ap=1 b;=1 b;=1
i—1-Y "t a, ="ty
T
kmo H{gmr 1,L1 Llym’!‘}{e - Z le:ml }]

al:].

i—1 i—1—ag i— 1—2372‘171_2[171 bn

Bj (k. j) Z Sy ¥ 3 o=5((i=1)Dat(D1=D2) 4!

m;_1 ap=1 b;=1 aj_1=1
P
T b,
kmo H{gmr 1,11 Llymr}{e - § : gml,l,Lle}]jv

b =1
and [X]; =7 — th component of row vector X.

For L1 +1<k<B-1,

Ele™U" " [(Nu, Jo) = (k)] = Y (&, (k. §) + B, (k. ),
=0

SWioHs), 1<j<N.

— . -1 . _s(i— 5
Ay(k,5) 20,  By(k,j) = e *07DP2| Z 9L,
bop=1

i—1 i—1—by i-1- a0,

Zl (k,j): Z Z Z Z e—s((i—l)DH.(Dz_Dl)Zé—l by)

mi1 m; bp=1 a;=1 bi_1=1
i—1- "t a, =3 by
T
gk ,L1 H{le mrgmr,Ll}{e - Z le,mz }]

al:].

i—1 i—1—bo i— 1—El1_1 an_zé_lbn

Z Z Z Z Z e—s((i—l)D2+(D1_D2) Ell—l an)

m; bp=1 a1=1 a;=1
i—1-S a3 by,
b
gk ,L1 H{le,mrgmr,Ll}le ml{ Z gTTlll,Lle}]j'

b;=1

Since the service time may change according to buffer occupancy, we must know the

number of cell pairs arriving from an arbitrary time 7 to the service completion epoch.
Consider the following joint probabilities:
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P{N(7) =0, An arrival is in (7,7 + d7)} = yoAedr.
Fori1<n<B-1, n+4+l<B-1,

P{N(r) =n,N;,,, =n+1,J;,, =j,R(r) =1, An arrival is in (7,7 + d7),
t<T <t+dt¢=1}

61,1 [zo(A — Q) 'AP(n — 1,D, — t)AP(l, t)drdt

min(n,Lq

)
+ > zP(n—i,Dy —t)AP(I,t)drdt];.
=1

For1<n<B-1,

P{N(r)=n,N;,,, =B —-1,J,_ ., =j,R(r) = 1,An arrival is in (7,7 + dr),
t<T§t—|—dt,£:1}

Cl, wo(A — Q) 'AP(n — 1,Dy — )AP(B — n — 1,)drdt
1

min(n,Lq)

+ Z P(n—i,Dy — t)AP(B —n — 1,t)drdt];,
where P k,t) ZP
=k

ForLi+1<n<B-1,n+l<B-1,

P{N(r) =n,N;,,, =n+1,J;,, = j,R(t) =2, An arrival is in (7,7 + d7),
t<T <t+dt¢=1}

1 n
=51 2 @mPln—i.D;— AP, drd];
i=L1+1

For L1y +1<n<B-1,

P{N(r)=n,N,, ., =B—-1,J, ., =7j,R(r) =2, An arrival is in (7,7 + dr),

Tk+1

t<T <t+dt¢=1}
1 & —
= [ > wiP(n—i,Dy— t)AP(B —n - 1,t)drdt];
Li=Li+1

By combining above results, we obtain the Laplace transform for the waiting time of
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a cell pair:

1
(1 — Piogs)ITAe
B—2B—-n-2

+_{Z Z zo(A — Q) 1A/ e™*'P(n —1,Dy — t)AP(l, t)dtW ;' (s)

Ele*"] = [yoAe

Z A-Q7A [ e P —1,D, — )AP(B —n — 1, )dtWE=L(s)
ne1 0

1BZBTL2

D,
S Z / P(n—i,Dy — t)AP(L,t)dtW"=}(s)

=1 n=1t

+§1:Z/Dl (n—i,D; — t)AP(B —n — 1,t)dtWn_1(s)

i=1 n=1t
B—2 B—-2B-n-—-2

D,
FY Yy /0 e, P(n — i, Dy — H)AP(L, 1)dtW™ = (s)

B—-1 B-1 Do
+ >N / etz P(n — i, Dy — t)AP(B —n — 1,t)dtWE=1(s)}].
i=Li+1 n=i Y0
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