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Abstract

The numerical solution of the Navier-Stokes equations in a constricted stepped

channel problem has been obtained using a fourth order numerical method. Trans-

formations are made to have a �ne grid near the sharp corner and a long channel

downstream. The derivatives in the Navier-Stokes equations are replaced by fourth

order central di�erences which result a 29-point computational stencil. A proce-

dure is used to avoid extra numerical boundary conditions near the solid walls.

Results have been obtained for Reynolds numbers up to 1000.

1 Introduction

We apply an wide fourth order numerical method for solving the Navier-Stokes equa-

tions to a constricted stepped channel problem. The constricted stepped channel prob-

lem considered consists of a sudden contraction (a forward-facing stepped channel, see

Figure 1) and contains a re-entrant corner. Because of the di�culties associated with

that corner this channel problem has been much studied.

Mo�at [13] has studied the Stokesian ow near a re-entrant corner and has shown

that the vorticity is singular. Bramley and Dennis [1] compare the Mo�at expansion

with their numerical solution near the corner for a branching channel problem and Hunt

[9] compares the Mo�at expansion along with other techniques for a constricted stepped

channel problem. Dennis and Smith [4] solve a constricted stepped channel problem

using diagonal grids near the corner. Holstein and Paddon [7] present a method which

is based on using Mo�at's expansion to produce �nite di�erence stencils which take into

account the nature of the singularity at the corner. Ma and Ruth [12] compare some

of the techniques referenced above and others with their vorticity-circulation method.

There are many other calculations of this problem which use either the streamfunction-

vorticity or the streamfunction formulation of the Navier-Stokes equations, and use

various methods to solve the system of the non-linear equations. We will cite a few.

Dennis and Smith [4] use the streamfunction-vorticity formulation of the Navier-Stokes

equations discretisating the streamfunction by second order central di�erences and the

vorticity equation by second order central di�erences which incorporate the Dennis-

Hudson arti�cial viscosity and the resulting system of equations is solved using an
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Figure 1: Stepped channel.

SOR iteration. Huang and Seymour [8] use the interior constraint method for solving

the streamfunction-vorticity formulation and again an SOR iteration is used to solve the

system of equations. Hunt [9] solves the streamfunction formulation using second order

central di�erences and Newton method is used to solve the resulting system of equa-

tions. Karageorghis and Phillips [11] solve the streamfunction formulation using the

Chebyshev spectral element method and the resulting system of equations is solved by

Newton method. Finally we observe that the computational domain for the constricted

stepped channel problem is L-shaped region. This causes considerable di�culties in ap-

plying a 29-point computational stencil near the re-entrant corner. However the main

di�culty with the constricted stepped channel problem is that the ow at the re-entrant

corner is singular, that is the second and higher derivatives of the streamfunction are

singular.

2 Forward-facing stepped channel

Let us consider a channel problem with walls at y = �1 for x < 0, y = �
1

2
for x > 0

and
1

2
� jyj � 1 for x = 0. Due to symmetry the problem is solved for y � 0 (see Figure

1). The governing equations for this channel problem are given by the Navier-Stokes

equations
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where Re is the Reynolds number and the boundary conditions are
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where Poiseuille ow has been assumed far upstream and far downstream.

Substituting equation (1) into equation (2) gives
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which is called the streamfunction formulation for the steady incompressible Navier-

Stokes equations

Because of the need of �ner grid near the sharp corner we consider transformations

given by

� = f(�); � = g(�) (5)

and hence the governing equations are given by

D = �� (6)
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We have chosen the same transformations given by Hunt [9], that is

x = f(�) =
�x0

k
sinh(k �) (9)

y = g(�) = � +
1

2�
(1��y0) sin(2� �) (10)

where h�x0 and h�y0 are the dimensions of a cell in the x{y plane near the corner, k

is a parameter determined by the position of the upstream boundary and h is the grid

size. Figure 2 shows an example of a non-uniform grid placed on the channel.
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Figure 2: Forward-facing stepped channel: grid mesh.

3 THE STREAMFUNCTION FORMULATION ON A

NON-UNIFORM GRID

Mancera [2] and Mancera and Hunt [3] have used a procedure to deal with the stream-

function formulation of the Navier-Stokes equations on a non-uniform grid which con-

sists of

1. Discretise equations (6) and (7) using fourth order central di�erences.

2. Eliminate �i;j from these equations.

3. Obtain a computational stencil with 29 points.

We will obtain the full expression for the streamfunction formulation of the Navier-

Stokes equations to analyse this constricted stepped problem since after discretising

the equation we will have a 29-point computational stencil, instead of the 33-point

computational stencil resulting from the procedure cited above (step 2). Writing equa-

tion (6) as
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and then calculating
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we obtain, after substituting these derivatives

in equation (7),
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Equation (12) is the streamfunction formulation of the Navier-Stokes equations on a

non-uniform grid considering the transformations given in (5). Finally, we observe that

if f 0 = g
0 = 1 in (12) then the expression (4) is obtained.

4 DISCRETISATION OF THE EQUATION

We set a uniform grid on the computational domain with grid size h in both directions

� and �. If  i;j denotes an aproximation to  at position (i; j) then the derivatives on

the �-direction are approximated by fourth order centre di�erences, that is,
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which gives a 5�5-computational stencil. Equation (12) is discretised by formulas (13)

and (14) to result the 29-point-computational stencil as shown in Figure 3.

The application of the 29-point computational stencil to this constricted stepped

channel problem is not straightforward because of the di�culties to deal with �ctitious

points near the sharp corner (singular point). To understand the di�culties let us

consider two situations of calculations near the sharp corner as illustrated in Figure 4.

Applying the computational stencil with 29 points at positions denoted by � we note

that both calculations use common �ctitious points, but the behaviour of the ow before

the corner is di�erent from the behaviour after the corner. Hence the four �ctitious

nodes near the corner have two values for the streamfunction each depending whether

the centre of the computational stencil is before or after the corner. To overcome these

di�culties we have not used �ctitious points at the solid walls in the calculations. If we
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Figure 3: Computational stencil with 29 points.

apply the 13-point computational stencil� at the interior points next to the boundary

and the 29-point computational stencil at all other interior points then we only require

the value of  at a single point, denoted by  ?, outside the boundary. This can be

eliminated using the derivative boundary condition at the wall given by

@ 

@n
= 0 (15)

where
@ 

@n
is the normal derivative. Using fourth order discretisation we can approxi-

mate this by

@ 

@n
'

1

12h
(3 ? + 10 0 � 18 1 + 6 2 �  3) = 0 (16)

where the subscripts 0, 1, 2 and 3 denote, respectively, a point on the boundary and

j = 1; 2; 3 the j-th internal grid point along the inward normal from 0, and ? a point

outside the boundary. From (16) we obtain that

 ? =
1

3
(�10 0 + 18 1 � 6 2 +  3) (17)

which can be used to remove the �ctitious point from the computational stencils with

13 and 29 points and then there are no �ctitious points used in the calculations. Our

use of applying the 13-point computational stencil next to the boundary di�ers slightly

from Henshaw's procedure (see Henshaw [5] and Henshaw et. al. [6]) where that

computational stencil is applied on the boundary, but the method can be shown to be

still fourth order accurate (Hunt, private communication).

Using these ideas we have set up a procedure (see Figure 5 for positions of calcu-

lations near the re-entrant corner) to discretise the governing equation in the compu-

tational domain. The procedure is as follows. Let us consider an N1 �M1 grid before

�This computational stencil is obtained by discretising the governing equation by second order

central di�erences.
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Figure 4: Computational stencils near the re-entrant corner.

the sharp corner and an N2�M2, where M2 =
M1

2
after it, where the grid vertices are

(i; j), i = �N1;�N1+1; : : : ;�1; 0; 1; : : : ; N2, j = 0; 1; : : : ;M , where M =M1 for i � 0

and M =M2 for i > 0. Then

1. At points j = M1 � 1 for �N1 + 1 � i � �2 and j = M2 � 1 for 1 � i �

N2 � 1 we apply a computational stencil with 13 points (second order accurate)

with all �ctitious points replaced by (17), that is  ? =
1

3
(�10 i;M1

+ 18 i;M1�1

�6 i;M1�2 +  i;M1�3) at j =M1 � 1 and  ? =
1

3
(�10 i;M2

+ 18 i;M2�1 �6 i;M2�2 +  i;M2�3) at j =M2 � 1. In Figure 5 these

points are indicated by 1.

2. At i = �1 for M2 + 1 � j �M1 � 2 we apply a 13-point computational stencil

with �ctitious points substituted by  ? =
1

3
(�10 0;j + 18 �1;j � 6 �2;j+ �3;j)

(see 2 in Figure 5).

3. At grid position (�1;M1 � 1) we apply a computational stencil with 13 points,

where to eliminate �ctitious points in both axis directions we apply similar ex-

pressions to  ? as those given in the two items above (see 3 in Figure 5).

4. At grid positions (�1;M2), (�1;M2�1) and (0;M2�1) we apply a computational

stencil with 13 points (see 4 in Figure 5).

5. At positions j =M1� 2 for �N1+1 � i � �3 and j =M2� 2 for 1 � i � N2� 1

we apply a computational stencil with 29 points (fourth order accurate), where

 ? =
1

3
(�10 i;k + 18 i;k�1 � 6 i;k�2 +  i;k�3) with k either M1 or M2 is used

to eliminate �ctitious points (see 5 in Figure 5).
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6. At i = �2 for M2+1 � j �M1� 3 the 29-point computational stencil is applied

with all �ctitious points substituted by the same expression given in the second

item (see 6 in Figure 5).

7. At position (�2;M1�2) we apply a computational stencil with 29 points with all

�ctitious points in both directions eliminated using  ? given in the two preceding

items (see 7 in Figure 5).

8. To other interior points we apply a computational stencil with 29 points. In

Figure 5 they are indicated by 8.

9. On solid walls we have  i;j = 1 and along the line of symmetry  i;0 = 0,  i;�1 =

� i;1 and  i;�2 = � i;2.

10. At the ends of the channel we have set  0;j =
jh

2
(3� jh),  N;j =

�
3jh� 4(jh)3

�
,

� �N1+2;j + 16 �N1+1;j �30 �N1;j + 16 �N1�1;j �  �N1�2;j = 0 and� �N2+2;j

+16 �N2+1;j � 30 �N2;j + 16 �N2�1;j �  �N2�2;j = 0.
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Figure 5: Stepped channel: positions of the calculations near the solid walls.
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5 NUMERICAL SOLUTION AND ACCURACY

The system of algebraic equations resulting from the discretizations is solved by Newton

method which is described in Hunt [9, 10] and Mancera and Hunt [3]. The numerical

solution is obtained on an N � M grid and in order to estimate the error in these

results we obtain a second solution on a N=2�M=2 grid for comparison. Suppose, at a

common location, the numerical solution is �F on the original �ne grid and �M on the

coarser grid and, if further � is the exact solution at this point, then since the methods

are fourth order we have

�� �F ' Kh
4
; �� �M ' K(2h)4 (18)

for some constant K. Eliminating � we obtain an estimate for the error EF on the �ne

grid (' Kh
4) as

EF '
�F � �M

15
(19)

The errors are estimated as follows

RMS : jj F �  M jj2 =

�
1

N

X�
 
F
ij �  

M
ij

�2�1=2
(20)

maximum : jj F �  M jj1 = max
ij
j F

ij �  
M
ij j (21)

where N is the number of points on the computational space,  F
i;j and  

M
ij , are, respec-

tively the numerical solution at (i; j) on the �ne and coarser grids.

6 Results for the stepped channel

We numerically solve the ow in the forward-facing stepped channel problem using

the 29-point computational stencil together with boundary data in which all �ctitious

points are eliminated. We consider the elimination of the �ctitious points to be the

best approach to this problem. Let us explain step by step the process of discretisation.

First, the Navier-Stokes equations (1) and (2) are transformated in equations (6) and

(7), where the coordinate transformations are given by equations (9) and (10). Second,

equations (6) and (7) are written in the streamfunction formulation alone (equation

(12)) and then discretised by fourth order central di�erences to obtain a 29-point com-

putational stencil. Third, equation (12) is also discretised using second order central

di�erences to obtain a 13-point computational stencil which is applied adjacent to the

walls. Fourth, we apply a procedure to eliminate all �ctitious points at the solid walls.

The results are presented both for a uniform grid and for a non-uniform.

For the uniform grid we have set the upstream boundary at x = �2 and the down-

stream boundary at x = 2, where the number of points on the �ne grid is 96 in the

y-direction before the corner. The maximum and RMS errors are shown in Tables y

yThe notation a(�b) means a� 10�b.
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Table 1: Maximum errors on a uniform grid.

Methods

Fourth order method Second order method

Re  errors  errors Ratio

0 1.50(-4) 8.00(-4) 5.33

1 1.55(-4) 8.32(-4) 5.37

10 1.86(-4) 1.04(-3) 5.59

50 2.24(-4) 1.53(-3) 6.83

100 2.32(-4) 1.84(-3) 7.93

250 4.35(-4) 2.26(-3) 5.20

500 1.97(-3) 2.30(-3) 1.17

Table 2: RMS errors on a uniform grid.

Methods

Fourth order method Second order method

Re  errors  errors Ratio

0 2.86(-5) 1.41(-4) 4.93

1 2.81(-5) 1.42(-4) 5.05

10 2.68(-5) 1.54(-4) 5.75

50 2.91(-5) 1.70(-4) 5.84

100 3.14(-5) 1.75(-4) 5.57

250 5.45(-5) 2.55(-4) 4.68

500 3.56(-4) 4.46(-4) 1.25

1 and 2, respectively. We note from both tables that the results given by the fourth

order method are not much more accurate than their second order counterparts where

for all Re the errors for the fourth order method are less than 8 times smaller than

their second order equivalent.

Now we analyse the results where �ctitious points are not used on the solid walls.

The upstream position is at x = �2 and the downstream position is either at x ' 100

or at x ' 1000. In the numerical simulations we have chosen �x0 = �y0 = 0:025 and

�x0 = 0:01 and �y0 = 0:025 on the coarser grid.

In Tables 3 and 4 we present results for the fourth and second order methods on a

non-uniform grid where the upstream position is at x = �2, the downstream position at

x ' 109, the value of the parameter k in equation (9) is 2.9973 and �x0 = �y0 = 0:025.

The number of points in the �-direction is 80 and in the �-direction 24 on the coarser

grid. Comparing the results given in Tables 3 and 4 with those given in Tables 1

and 2 we have obtained results up to Re = 1000, even though for the fourth order

method Newton method has failed to converge after 10 iterations. For the fourth order

numerical method the errors on a non-uniform grid are smaller than the errors on a
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Table 3: Maximum errors and ratio between errors for the upstream position at x = �2,

downstream position at x ' 109 and �x0 = �y0 = 0:025.

Methods

Fourth order method Second order method

Re  errors  errors Ratio

0 8.81(-5) 9.60(-4) 10.90

1 9.11(-5) 9.13(-4) 10.02

10 1.10(-4) 6.28(-4) 5.71

50 1.43(-4) 7.02(-4) 4.91

100 1.57(-4) 9.53(-4) 6.07

125 1.62(-4) 1.04(-3) 6.42

250 1.89(-4) 1.34(-3) 7.09

500 3.99(-4) 1.64(-3) 4.11

750 9.16(-4) 2.84(-3) 3.10

1000 | 4.79(-3) |

uniform grid for all Reynolds numbers. The ratio between the errors are less than 11

for the maximum erros and less than 13 for the RMS errors.

The results for the situation upstream position at x = �2 and downstream position

at x ' 1033 are given in Tables 5 and 6, where the number of points in the �-direction

is 98 and in the �-direction is 24 on the coarser grid. We have obtained results for

Reynolds number up to 1000 and for both fourth and second order numerical methods.

Comparing the maximum and RMS errors given in Tables 5 and 6 with their coun-

terparts given in Tables 3 and 4 we observe the same results for the maximum errors

and the RMS errors are smaller for the downstream position x ' 1033 since the ow

changes very slowly after the the sharp corner. Again the ratios between the errors

from the second and fourth order methods are, respectively, less than 12 and less than

14 for the maximum and RMS errors.

We have also analysed the constricted stepped channel problem for the same up-

stream and downstream positions but considering �x0 = 0:01 and �y0 = 0:025. We

have chosen these values after many numerical experimentations, since the Newton

method employed has not converged for some values of �x0 and �y0. For the up-

stream position at x = �2 and downstream position at x ' 142 the number of points

in the �-direction is 72 and in the �-direction 24 on the coarser grid and k = 4:2638.

The maximum errors (see Table 7) range from 4:78�10�5 to 3:12�10�4 for the fourth

order method and the ratios between the errors from the second and fourth order meth-

ods are less than 25 for all Reynolds numbers. For the fourth order method the RMS

errors given in Table 8 range from 6:02 � 10�5 to 1:28 � 10�5 and again the ratios

between the errors are less than 25. The fourth order method did not converge after

10 iterations to Re = 1000 on the coarser grid. Comparing the errors for the fourth

order method given in Tables 3 and 4 with those given in Tables 7 and 8 we observe

that both maximum and RMS errors are smaller for �x0 = 0:01 and �y0 = 0:025.
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Table 4: RMS errors and ratio between errors for the upstream position at x = �2,

downstream position at x ' 109 and �x0 = �y0 = 0:025.

Methods

Fourth order method Second order method

Re  errors  errors Ratio

0 2.03(-5) 2.59(-4) 12.76

1 2.04(-5) 2.49(-4) 12.21

10 2.10(-5) 1.89(-4) 9.00

50 2.33(-5) 1.34(-4) 5.75

100 2.60(-5) 1.35(-4) 5.19

125 2.67(-5) 1.37(-4) 5.13

250 3.15(-5) 1.49(-4) 4.73

500 6.85(-5) 1.70(-4) 2.48

750 1.71(-4) 5.14(-4) 3.01

1000 | 6.52(-4) |

Table 5: Maximum errors and ratio between errors for the upstream position at x = �2,

downstream position at x ' 1033 and �x0 = �y0 = 0:025.

Methods

Fourth order method Second order method

Re  errors  errors Ratio

0 8.81(-5) 9.60(-4) 10.90

1 9.11(-5) 9.13(-4) 10.02

10 1.10(-4) 6.28(-4) 5.71

50 1.43(-4) 7.02(-4) 4.91

100 1.57(-4) 9.53(-4) 6.07

125 1.62(-4) 1.04(-3) 6.42

250 1.89(-4) 1.34(-3) 7.09

500 3.99(-4) 1.64(-3) 4.11

750 9.26(-4) 1.72(-3) 1.86

1000 1.33(-3) 2.00(-3) 1.50
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Table 6: RMS errors and ratio between errors for the upstream position at x = �2,

downstream position at x ' 1033 and �x0 = �y0 = 0:025.

Methods

Fourth order method Second order method

Re  errors  errors Ratio

0 1.84(-5) 2.44(-4) 13.26

1 1.85(-5) 2.36(-4) 12.76

10 1.90(-5) 1.85(-4) 9.74

50 2.13(-5) 1.40(-4) 6.57

100 2.35(-5) 1.41(-4) 6.00

125 2.42(-5) 1.42(-4) 5.87

250 2.85(-5) 1.52(-4) 5.33

500 6.19(-5) 1.70(-4) 2.75

750 1.60(-4) 2.23(-4) 1.39

1000 2.28(-4) 3.01(-4) 1.32

Table 7: Maximum errors and ratio between errors for the upstream position at x = �2,

downstream position at x ' 142 and �x0 = 0:01 and �y0 = 0:025.

Methods

Fourth order method Second order method

Re  errors  errors Ratio

0 4.78(-5) 1.16(-3) 24.27

1 4.94(-5) 1.10(-3) 22.27

10 6.05(-5) 7.49(-4) 12.38

50 8.33(-5) 6.82(-4) 8.19

100 9.72(-5) 5.10(-4) 5.25

125 1.00(-4) 5.37(-4) 5.37

250 1.03(-4) 6.82(-4) 6.62

500 1.38(-4) 1.03(-3) 7.46

750 3.12(-4) 6.98(-3) 22.37

1000 | 5.37(-2) |
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Table 8: RMS errors and ratio between errors for the upstream position at x = �2,

downstream position at x ' 142 and �x0 = 0:01 and �y0 = 0:025.

Methods

Fourth order method Second order method

Re  errors  errors Ratio

0 1.28(-5) 3.05(-4) 23.83

1 1.31(-5) 2.96(-4) 22.60

10 1.50(-5) 2.18(-4) 14.53

50 1.82(-5) 1.23(-4) 6.76

100 2.05(-5) 1.18(-4) 5.76

125 2.10(-5) 1.18(-4) 5.62

250 1.95(-5) 1.23(-4) 6.31

500 2.63(-5) 2.05(-4) 7.80

750 6.02(-5) 1.25(-3) 20.76

1000 | 9.74(-3) |

In Tables 9 and 10 we present errors for the downstream position at x ' 1199

with the number of points in the �-position equal to 84. We have obtained results

up to Re = 1000 for the fourth order method and up to Re = 750 for the second

order method. Again the ratios between the errors are less than 25 for both maximum

and RMS errors and the RMS errors are slightly smaller than the RMS errors for the

channel with the downstream position at x ' 142.

Comparing both situations of channel length and grid re�ning we observe that the

upstream position x = �2, downstream position x ' 1199, �x0 = 0:01 and �y0 =

0:025 have given the best results for the fourth order numerical method, although the

ratio between the errors for all situations analysed has indicated that the fourth order

numerical method is not much more accurate than the second order method for this

channel problem.

7 Conclusions

We have analysed a fourth order numerical method for solving the Navier-Stokes equa-

tions for the constricted stepped channel. We have set a transformation which gives a

�ne grid near the sharp corner and a long channel downstream. For the most situa-

tions we have obtained results for Reynolds numbers up to 1000. Due to di�culties to

deal with the solution near the sharp corner we have used a procedure which gives no

�ctitious points at the solid walls. For this channel problem the fourth order numerical

method is not much more accurate than the second order method, but we must note

that  has singular derivatives at the sharp corner which inuences the solution, as

can be observed in Mancera and Hunt [3] where a channel problem with gradual and

smooth constriction is solved.
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Table 9: Maximum errors and ratio between errors for the upstream position at x = �2,

downstream position at x ' 1199 and �x0 = 0:01 and �y0 = 0:025.

Methods

Fourth order method Second order method

Re  errors  errors Ratio

0 4.78(-5) 1.16(-3) 24.27

1 4.94(-5) 1.10(-3) 22.27

10 6.05(-5) 7.49(-4) 12.38

50 8.33(-5) 3.95(-4) 4.74

100 9.72(-5) 5.10(-4) 5.25

125 1.00(-4) 5.37(-4) 5.37

250 1.03(-4) 6.82(-4) 6.62

500 1.38(-4) 1.03(-3) 7.46

750 3.11(-4) 1.03(-3) 3.31

1000 5.64(-4) | |

Table 10: RMS errors and ratio between errors for the upstream position at x = �2,

downstream position at x ' 1199 and �x0 = 0:01 and �y0 = 0:025.

Methods

Fourth order methods Second order methods

Re erros  erros  Ratio

0 1.19(-5) 2.89(-4) 24.29

1 1.22(-5) 2.81(-4) 23.03

10 1.39(-5) 2.11(-4) 15.18

50 1.69(-5) 1.30(-4) 7.69

100 1.90(-5) 1.25(-4) 6.58

125 1.95(-5) 1.25(-4) 6.41

250 1.80(-5) 1.30(-4) 7.22

500 2.43(-5) 1.99(-4) 8.19

750 5.59(-5) 3.94(-4) 4.23

1000 9.31(-5) | |
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