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How to Compute the Smallest / Largest Eigenvalue of a

Symmetric Matrix

Ran Baik

Abstract

In this paper we develop a general Homotopy method called the Group Homo-
topy method to solve the symmetric eigenproblem. The Group Homotopy method
overcomes notable drawbacks of the existing Homotopy method, namely, (i) the
possibility of breakdown or having a slow rate of convergence in the presence of
clustering of the eigenvalues and (ii) the absence of any definite criterion to choose
a step size that guarantees the convergence of the method. On the other hand, We
also have a good approximations of the largest eigenvalue of a Symmetric matrix
from Lanczos algorithm. We apply it for the largest eigenproblem of a very large
symmetric matrix with a good initial points.

1 Introduction

We have developed a general Homotopy method for the eigenvalue problem of a Sym-
metric matrix. A general Homotopy method called, the group Homotopy method has
attractive features that it preserves the structure of the original matrix and finds a
specific eigenvalue without computing any other eigenvalues, in contract with the ex-
isting methods which destroy the structure during similarity transformation. Since
the method preserves the special structure of matrices, it is quite suitable to obtain
eigenpairs of a class of matrices which possesses some special characteristics that we
might take advantage. In this paper, we present the method how to find extreme
eigenvalues of a Symmetric matrix. Recall that a Homotopy method for the eigenvalue
problem is in the following. Let A € M, be Symmetric. Then there is a orthogonal
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A1 0
U=[U; ... Uy) € M, such that A = U UT where M\; € R are the
0 An

eigenvalues and Uy, € R" are the corresponding eigenvectors of A for k=1,...,n. We de-

note by [ f\&k :, € R" x R the eigenpair of A for k=1,...n. Note that since {Ux};_;
k

is linearly independent { [ [){k
k
of eigenvalues of A(including multiplicities). Suppose the eigenvalue A\ € o(A) has the

] } is linearly independent. We denote by o(A) the set

algebraic multiplicity p, i.e., Ax = Ag41 = +++ = Ag4p. Then we note that any X €

. . . | Ok . .
span {U,-}i___k’___,k +piS an eigenvector for Ax. Thus an eigenpair [ /\k ] is not unique.
k

X

Let S € M,, be the initial Symmetric matrix with eigenpairs [
g

] for k=1,... n that

‘ U
are known. Let A € M,, be the objective Symmetric matrix with eigenpairs l /\k } for
k

k=1,...,n are to be obtained. Define a mapping H : R — M, such that
H(t)=A@t)=(1-t)S+tA, te[0,1].

Note that A(t) = S + t(A — S) so that the matrix A(t) can be made close to S
by choosing ¢ small enough. The objective is to obtain the set of all the eigenpairs

U
{[ k } }, k =1,...,n of A(1) = A by successively obtaining the set of eigenpairs
U(’)
A yk=1,...,n0f A(t;),0=1p < t1 < .-+ < t, = 1, starting from the set of

eigenpairs { [ Tk ] } yk=1,...,nof A(0) = S. The procedure is called the Homotopy
o

method {1,4]. From the existing homotopy method, it didn’t give us any criterion of
the step size At . To overcome the absence of any definite criterion to choose a step
size that guarantees the convergence of the method, a new Homotopy method called,
the individual Homotopy method, is developed [3]. The homotopy method proceeds as

following :
Set tg = 0.
t
(i) Find 1, (21 > to) such that the initial points @ (to) ] } converge to { [ ok(t1) ] },
ax(to) ax(t1)

for k=1, ...n under the Newton iteration [1,5,6).
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A1 (tl) 0
(ii) Obtain A(t1) = S + t1(4 — §) = X(t1) X7T(t1), where
0 An(t1)
X(t1) = [X1(t1) -+ Xn(t1)] € M, is an orthogonal matrix. Notice that A(t) = S+
t(A-S)=S+t1(A-S)+(t-t1)(A—S) = A(t1) + (t — t1)(A — S) for some ¢ €[0,1].
Hence A(t) can be again made close to A(t;)by choosing some small ¢ > ¢; . Thus we
find ¢ > tithat satisfies the condition (i). In this way, we successively produce that

t
approaches to 1 while obtaining the eigenpairs {[ wki:; } } of A(t;) by the Newton
g\t

iteration[1,5,6]. We describe the method to compute extreme eigenvalues of a matrix
based on the group homotopy.

It is clear that if we can choose an initial matrix properly, then we can reduce
the number of iterations. In section 2, we present the group homotopy method with
the choice of the initial matrix where the objective matrix is a symmetric matrix. In
section 3, 4, we present the applications of computing extreme eigen values and the

experiments for the algorithm.

2 Methodology for The Group Homotopy

In the group Homotopy, the choice of an initial matrix can be arbitrary even though a
good choice of the initial matrix might facilitate convergence. The group Homotopy is a
general Homotopy method in the following senses: (i) Unlike in the existing Homotopy
method[1], it gives a definite criterion of how to choose a step size that will guarantee
the convergence in the modified Newton Iteration[3]. (ii) The method works regardless
of the choice of the initial matrix. (iii) The method guarantees a big enough step size
At; so that the group Homotopy method terminates in a finite number of steps and
gives all the eigenpairs of the objective matrix. To obtain a group Homotopy method
that will accomplish all the above objectives, we carefully examine difficulties that arise
in the individual Homotopy(3] method. Assume that an arbitrary Symmetric matrix is
chosen as the initial matrix. As we have observed previously, the individual Homotopy
method fails whenever the gap between some adjacent eigenvalues of the matrix A(t)
becomes quite small. It will occur when some eigenvalues of A(t) are clustered, i. e.,
there are groups of a consecutive eigenvalues in which the distance between any two
groups is much larger than the gaps among the eigenvalues that belong to the same
group. We resolve the difficulty by using a concept, called the group gap. For that
purpose, we define a clustering of eigenvalues as follows:

Definition 2.1 : We say that two adjacent eigenvalues \; and My are clustered if
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|Ak — A1) < Gap*,1 > k > k — 1 where is a given positive number.

Definition 2.2 :We say that a subset G = {Ag, Akt1y- .- Akrm} C 0(4) is a group
of clustering of eigenvalues if |Agy; — Agrit1] < Gap* for all i = 0,...,m — 1 where
|Ae-1 ~ Ax| = Gap® and [Axtm — Aetmea| > Gap®.

From the definition we note the following: Suppose G; and G2 are two distinct
groups of clustering eigenvalues in o(A), G1 = A1,, -+, Aj,and G2 = A1,,-++, A, Then
A, — Ni| > Gap* for all k = 0,...,8sand m = 0,...,t Tﬂl‘nus, there is a gap, i. e.,

gap

Gap* between G; and G2. Note that for the At; = M, gap* = gap*(A(t;))

individual Homotopy[4]. Now we will make a suitable choice of Gap* in order to have
a big enough step size At; = I-l—zg%p—;”z for the group Homotopy to ensure the method
terminates in a finite steps. We will use the following choice Gap* of for an actual
implementation of the algorithm: (i) Gap* = §||A — S||z for a suitable § > 0 or (ii)

Qmaz — Ol
—1%2___T K > 0 afixed constant where n is the size of the matrix. Now we

Gap* =
pay attention tg some difficulties that might occur with the group Homotopy by using
a group gap. Two serious problems occur with the procedure in this group Homotopy,
which requires some detailed discussion to clarity the point. First, in contrast with the
individual Homotopy, the Newton iteration may not converge at all under the group
Homotopy where the step size At; > 0 is determined by the group gap, Gap*. Note
that in the individual Homotopy, we give the criterion of the stepsize for Homotopy
method.

Theorem 2.3 : Let symmetric matrices A and S be such that

A1 0
A=U vt
0 An
and
ay 0
S=X XxT,
0 Qn

A]_ Z --.ZAn arldal Za2_>_--.2an,U=[Ul"'Un] EMn andX=[X1"'Xn} e
Ug
k

M,, are orthogonal matrices. Then } fork=1,...,n, under

k
converges to
277

*(S
the Newton iteration whenever ||S — Al]s < 'gg%(-—),q >4.

proof: [3]
Theorem 2.3 ensures if it is chosen such a way that where then the Newton itera-
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Xi(t:)

] of the matrix A(t;) = (1 — ;)8 + ;4
g (t:)

tion starting with each eigenpair [

X (t; ]
is guaranteed to converge to the corresponding eigenpair [ k((tﬂ'l)) } of the matrix
ak(lit1
A(tiv1) = (1 —ti+1)S+t;A. But once the clustered eigenvalues are grouped together to
gap®

produce big enough step size At; = Theorem 2.3 does not hold and we lose
q

|4 - Silz
that theoretical guarantee of the convergence with the Newton iteration. We provide
an example to illustrate the point.

Example 2.1: Suppose that

10 0 20 O
S=A0)=]01 0 andA=A(1)=U|0 0 o |UT
0 0 -100 0 0 —-101
where
STy -
1 -
0 0 1
Then
10 0]
IS — All2 = 01 =1.
0 Jli2
Gap* 101

M=T>I.Note

the example is constructed such that the eigenvalue 1 (algebraic multiplicity 2) consists

If we choose Gap* = |1 — (—100)| = 101 and g = 4, then

a group G of clustered eigenvalues of S = A(0) and the eigenvalues 2 and 0 form the

counterpart group G’ in the o(4) = o(A(1)). Furthermore, the first two components
1

of the vector Uz; = é; that corresponds to the group of clustered eigenvalues 1
0
of S have all the possible weight. Now if we proceed with the Newton iteration (2.4)
1
with @1 =1,z1 = | 0 | to obtain the eigenpair of 4,
0

w_ ©_ 1 _ (@ _ 1
M= s “ a:flr(ago)I — A)1zy B
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because
1
-1 0 0 =
_ 1 1 V2
${(a§O)I—A) 1) = (—‘/—-5 E 0) 0 1 0 ﬁ =0
’ 0 0 1/102 0

We resolve the problem by developing a modified Newton method that has a global
convergence property. We describe the method in detail in the next section. Now, we
discuss one other major difficulty that arises with the group Homotopy. Assume that
the convergence of iteration is guaranteed under the modified Newton method. It should
be noted that the Homotopy method produces successively a better approximation of
the target matrix A as, ¢ — 1 i.e., we obtain the matrix A(t;+1) = (1 — t;+1)S +tin 4
from the matrix A(t;+1) = (1 — 4)S + ;4,0 < t < 1 by the Newton iteration and
we conclude that A(t;+1) is a better approximation than A(¢;) to the target matrix A.
Therefore, the method requires a complete set of eigenpairs at each step of Homotopy
to proceed to the next step. Notice that the previous individual Homotopy method
automatically gives the complete set of eigenpairs in each step of Homotopy. Suppose
{[ X (t:) ] , [ X1 () ] , [ Xt (t:) ]},1 <m<nforsomel <k<n,k+tm<n

ax(t:) ag41(t:) Ck+m(ti)
is the subset of clustered eigenpairs of A(t;)) that is grouped together, 0 < ¢; <1 and

let At; > 0 be obtained from Gap* under the group gap criterion.

3 Its Applications for Solving the Extreme Eigenvalue
Problem

In this section, we consider a definite criterion of the stepsize under the group homotopy

method for the eigenproblem of a symmetric matrix. Suppose At; is determined via
Gap*

~ ql[A=Sll
A(t;). 1t is given that the clustered eigenvalues of A(t;) are grouped together whenever

Gap* i. e, At; = ti41 — t; , to obtain all eigenpairs of A(t;+1) from

the gap between two adjacent eigenvalues is less than Gap*. We show that there are
some strong connections between eigenvalues of A(t;) and A(¢;+1) under the assumption

|4 -S|z < Gap*. Suppose o(A(t;)) = {a1:+-an}, a1 2 -+ > oy, is grouped together
under the clust%ring criterion determined by Gap*, o(A(t:)) = U{_,Gk, Gk = {ar, 2
«++ > ay, } is a group of clustering eigenvalues of A(t;), 81 +8s2+:-+s, =n. We devide
o(A(tis1)) = {1 - A}, A1 2 - -+ > A, to form the groups correspond to the grouping
in o (A(t;)) such that o(A(t;)) = Ul G}, Gl = { Mk, = ++* 2 Mg, }r 81+ 82+ +8g =m.
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t ]
Gap . Then we claim that

We call Gj; the counterpart of Gi. Suppose ||4 — S||2 <

the counterpart G’ is close to G for a large enough q,

Lemma 3.1: Suppose A4,S € M, are symmetric and let A\; > -+ > A, and a1 >
-++ > op be the eigenvalues of A and S respectively. Then ||A — S|z = p(A - 8) >
mazr{|A\x — ar(4 ~ S)|} where p(4 — §) = mawk{|/\k(A S)/A(A — S) are the

Gap G
eigenvalues of (A — S)} . Consequently, if [|A — S||2 < T then |Ar — ax| < ap”
forall k = 1,.--,n. Now we make the following observation. Note that ||A£t,'+1) -

Gap* Ga
A2 = lti3 — till4 ~ Slla = AtllAd — s < P 1A= Slla = =

%

Gap
Thus, mazr{| \ —ak|} <
of A(tH.l)and A(t;) , respectively. Therefore, the k-th eigenvalue of A(t;4;) must be

by Lemma 3.1, where Ax and oy, are the eigenvalues

within Gap® distance from the k-th eigenvalue of A(¢;) for all kK = 1,---,n. Now we

q
verify the claim statement.
Gap*

Lemma 3.2: Suppose ||[A — S||z = , ¢ > 1 and let G; and G2 be two distinct

groups of clustering eigenvalues of A(t;) . If G} and G} are the groups of eigenvalues
2

of A(ti+1) counterpart to Gi and G respectively, then dist(G},G5) > (1 — a)Gap*,

where dist(G},Gh) = min{|As — At|/ s € G} and A, € G4}

Proof: Suppose G and G are two distinct groups in A(t;) . Then |a, —a¢| > Gap*
for all A, € G1 and A\¢ € G3. Now for a; € G} and a4 € G5, Gap* < |as —atl
Ga
(s = As+As — A+ A — | < las— Ag|+|og — Ag| +]As — A¢|- Since |og qp and

2Gap*
e — | qp s = Ael, oF JAs — e > (1—(—1)Gap*.
Therefore Lemma 3.2 verifies that for a large enough q > 1, any two distinct groups G
2

and Gj are separated by at least (1 — E)Gap* distance. Now we verify that the above

is enough to guarantee the convergence of a to some A € G'.
G L]
Theorem 3.3: Suppose [|[A — S}z = P
group of clustering eigenvalues, o;, < - < ;.
Gap* . Gap' . o
Let B = |ay, — 3 o + C R be a closed interval. Then the iteration {a(®}

under the modified Newton method starting at a(®) = a € B remain in B, i e., for

,g>1andlet G = {a;, :+,0i,} bea

all i[5]. Since the modified Newton method is guaranteed to converge, Theorem 3.3
asserts that each o € G must converge to some eigenvalue A € G' of A(t;y1). We
have discussed about the basic idea of the group homotopy in the section 2. Now
we want to apply the group homotopy method for computing the extreme eigenvalues
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of a Symmetric matrix. First, it is reminded that we can reduce the number of the
iterations, if we choose a proper initial matrix. We consider the choice of the initial
matrix of the given symmetric matrix. The choice of an initial matrix S is based
on how close are located the eigenvalues of the objective matrix A or ||A — S]]z is
small as possible. In our extreme eigenvalue problem, we use the Lanczos algorithm
to choose an initial matrix, tridiagonal matrix(from Lanczos method). The initial
matrix provides very good approximations to the extreme eigenvalues of the objective
Symmetric matrix. We describe how to choose an initial matrix and the definite stepsize
At. Given n by n symmetric matrix A and a unit vector v, the Lanczos algorithm
constructs simultaneously a symmetric tridiagonal matrix T and an orthonormal matrix
V such that T = VT AV. We can choose an initial matrix for the extremal eigen problem
since some diagonal entries of tridiagonal matrices are close to the extreme eigenvalues
of a objective matrix. Suppose |[T' — All2 = € and A¢t; = t;41 — ¢;. Then note that
1A — Altiva)ll2 = IT +&(A-T) = (A+ti2(A-T))|l2 = || At(A-T)l|l2 = B; e <

Gap* Gap
— = ||A =T}l =
qllA Tl k ll2 = q

4 Algorithm

In this section, we describe two algorithms for simultaneously finding the eigenpairs of

an n X n symmetric matrix A.

4.1 Algorithm I : Modified Newton Iteration with proper initial

points
Let A = (aij) € M, be a given symmetric matrix with eigenpairs for k= 1,...,n. Choose
S = dlag(a(o) om )) be to the initial matrix where the diagonal elements of T are

arranged in decreasing order.
Step 1: Apply the Lanczos algorithm to get the initial matrix T' = VT AV such that

ar B - 0
T /o az :
o Bn—1
0 AR ﬁn - 1 an

(i) SeE’l}o:O ﬂo—l Tg = V1. )
(ii) v; = ﬁ =, =1 TAv; , rj = (A - ojI)v; — Bj—1vj-1.
(iti) B; = IIrjllz -

x©

Step 2: Set the initial eigenpairs as D = [ ?o) ] for k = 1,..., m (some number of
g
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extreme eigenvalues) where X Igo) is the k-th column of orthogonal matrix V.

Step 3: Compute for k = 1,..., n (in Parallel)

(@) ll(4- a‘°’r)x‘°’|| :

(i) If ||(A — ak I)X,EO)||2 < €e=10"%  then go to Step 5, otherwise go to Step 3.
Step 4: Apply the modified Newton method.

Modified Newton’s Iteration: (in Parallel )

For k=1,2,...,n

For i=1,...

(i) Solve (4 — 1)V = x&.

(i) Compute 8 = (X (’))TY(’)

(
(iii) Compute ﬂki) = HYk(’)Hz.
(iv) X} (+1) _

A(
ﬂk") A
(V) a;:+l) — a;:) _ E(%{-

(vi) ag)— > a§:+1) , ;(,gi)— > X,g“'l) .

(vit) Check ||(A — ag)I)X,(f)Hz < €. Otherwise, go to Step 3 - (i).

Step 5: Let m be the number of eigenpairs obtained from Step 3. If m = n, then
all the n eigenpairs are obtained. If mjn, then obtain the (n-m) eigenpairs as fol-
lows: Denote by {Gk}jzl,---,m the m groups of eigenpairs as defined below. G =

) (0)
{[ cho) ] [ X(o) ] converges to [ Uk }}fork= 1,..-,mwherem1+,,,+mm=n’
Q Ak

m; is the number eigenpairs in each group.

For k=1,-..,m (in Parallel)

(i) Compute miny<;j<m, ||(A—a§3) nx ,(3) ||. (Note that for each group there is one vector
which satisfies the above relation.)

(ii) Orthogonalize the other vectors.

For k = 1,---,m (in Parallel):

Forj=1,--.,(mg —1). X

Orthogonalize using {U3, U3, -, Uz,X,E?)} - {Ul, Us, -, U,,X,(;?)}using the modified

Gram-Schmidt process.
' (0)

- . xP
(iii) Using Step 3 with eigenpair (0) J , obtain a new set of eigenpairs [ (i) J

)
X Uk
(iv) Set [ (0) ] — [ M ]

Step 6: End
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We describe algorithm using the group homotopy method with a choice of Gap*.

4.2 Algorithm II : Group Homotopy method

ey Y
Let A = (ai;) € M, be a given symmetric matrix with eigenpairs [ /\k ]for k=1,.--,n
k

and S = diag(e?,+-,a?). Consider A(tiy1) = (1~ :)S + ;A where 0 < #; < land
Ati = ti+1 - ;. Suppose Ga,p* = JHA - S”z, then Ati = (5”A;45“2) . (”A';IS“Q) = g
In the following algorithm we choose § = 1 and q = 4 which leads to the step size
At; = 0.25. Consider A(tp) =S = diag(ago) yooe ,a,(,o) where diagonal elements of A(tp)
are arranged in decreasing order. Note A(0) = S.

Set tg = 0, At; = 0.25.

x©

Step 1 : Choose the initial eigenpairs of A(0) = { (’B)
O

} fork=1,-.-,n where

X ,EO) is the k-th column of orthogonal matrix V. Set t5 = 0, At; = 0.25.

Step 2 : Fori=1,2,34. : (i) t; = t;—1 + At. (ii) Arrange the eigenvalues of A(t;—1)
in decreasing order with corresponding eigenvectors. (iii) Apply Algorithm I{modified
Newton method with orthogonalization) from step 2, to obtain all the eigenpairs of A(¢;).
(iv) If ¢ # 1, go to step 2-(i).

Step 3 : End.

4.3 Numerical Results

Since || - ||2 £ || - | where || - || is the Frobenius matrix norm and | - || is easy to
compute, we use |4 — S||F to compute At; in the following examples.

M = the number of eigenpairs obtained using the modified Newton itera-
tion.

B = the number of eigenpairs recovered with modified Gram-Schmidt pro-
cess using the modified Newton iteration.

C = the maximum number of iterations at each step.

D = the maximum number of iterations needed for the orthogonalization.

Example 4.1: Consider the matrix
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A= [a,-j],eMn ai; =1 ifi> g,
ajj = (—1)i3 x1 ifi=j,
aij = j if j > .
Choose the initial matrix S such that A(0) = S = diag(ai1,a22,...,0nn). |4 —
S||F = 1779.2. The result of Table 4.1 uses ¢ = 4 in Algorithm IIL
Table 4.1 (using Algorithm II, ¢ =4, n = 50 )
Eigenvalues to t1 ‘ ta t3 4 Exact
of A(t;) 0 0.25 0.5 0.75 1.0 Eigenvalues
1st 150.00 | 457.8705 | 879.5562 | 1308.3704 | 1739.0637 || 1739.0537
20th 36.00 32.0262 32.6110 27.9100 23.4161 23.4161
30th -27.00 | -27.6036 | -30.4504 | -33.3424 | -36.2029 -36.2029
40th -87.00 | 94.4645 | -96.4081 | -104.6880 | -112.8265 | -112.8265
50th -147.00 | -164.1900 | -215.4465 | -285.9817 | -363.2445 || -363.2445
M 46 44 45 45
B 4 6 5 5
C(D) 8(6) 8(5) 10(4) 8(4)

From the results of numerical experiments below, it is clear that if ¢ is large then
the number of iterations in each step is significantly lower (see last row of each table)
and also the number of eigenpairs recovered using algorithm I (Step 4) is also less (row
representing B).

Example 4.2:

We apply to compute the largest and smallest eigenvalues of symmetric matrices. In
order to choose the initial matrix that is close to the largest and smallest eigenvalues of
the given matrix, we use the Lanczos method to get a good choice of the initial points.
(1) A symmetric matrix 4 = (a;;) € My, aij = § ifi > j, ai; = (—1)*3xi, if i = j,a;j = j
if j > 4. Choose the initial matrix T such that T=V7 AV. (see Table 4.2.1)

(2) A symmetric Toeplitz matrix A , b; = 2% i + 4 and the initial matrix T such that
T=VTAV. (see Table 4.2.2)
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Table 4.2.1
n | extreme eigenvalues | the initial value | Eigenvalues | iterations
50 the smallest -215.00 -363.2445 8
the largest 739.00 1739.0537 5
100 the smallest -1.1641e+003 | -1.3400e+003 5
the largest 6.6690e+-003 6.9441e+-003 5
200 the smallest -4.6122e+003 | -5.2113e+003 5
the largest 2.7127e+004 2.7776e+004 5
300 the smallest -1.1013e+004 | -1.1637e+004 5
the largest 6.1646e+004 | 6.2505e+004 5
400 the smallest -1.9315e+004 | -2.0617e--004 5
the largest 1.0999e+-004 1.1113e+004 5
500 the smallest -3.0656e+-004 | -3.2151e4-004 5
the largest 1.7232e+-005 1.7365e+005 5
Table 4.2.2
n | extreme eigenvalues | the initial value | Eigenvalues | iterations
50 the smallest -1.0095¢4-003 | -1.0135e-+003 5
the largest 1.8774e4-003 1.8814e+003 5
100 the smallest -3.9720€+003 | -4.0532e+003 4
the largest 7.1716e+4-003 7.2374e+003 4
200 the smallest -1.618e+004 -1.6212e+004 4
the largest 2.8196e+004 | 2.8372e+004 4
300 the smallest -3.6322e+004 | -3.6476e+004 4
the largest 6.13294e+004 | 6.3402e+-004 4
400 the smallest -6.4600e+004 | -6.4846e+004 4
the largest 1.1222e+4-005 1.1233e+005 4
500 the smallest -1.0103e+4-005 | -1.0132e+005 4
the largest 1.7502e+-005 1.7515e4-005 4
Example 4.3:

A symmetric matrix A = (a;;) € My, a;5 =i ifi > j, a5 = (1) %4, if i = j,a;; = 7 if
4 > i. Comparison of the existing method for the largest eigenvalue of the given matrix
A.
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Table 4.3
n | Power Method | Inverse Power | Rayleigh Quotient | eigenvalue
iterations iterations iterations

50 6 6 2 1739.0537
100 7 6 2 6.9441e+003
200 8 6 2 2.7776e+004
300 8 6 2 6.2505e+004
400 9 6 2 1.1113e+005
500 9 6 2 1.7365e+005

From Table 4.3, we compare the existing methods(power, inverse power and rayleigh
quotient) in the same matrix. In this method, we can compute the largest/smallest
eigenvalue at once. If we compute the largest one and the smallest one at once, it is
impossible to get them. The procedure is a sequential process. The existing method is
limited to get a few of extreme eigenvalues at once. Our method is developed to deal
with those drawbacks in the existing methods.
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