WBERENBHRE A28 A28 109-114, 1999.10

J. of Korea Society of Industrial Application, Vol.2, No.2, 109-114, October. 1999

A2 Batal AL o] 83 ANE A9 v foFo AT
Al A+
Case Study of a Cost Estimation for the Signal Processor
through System Partitioning and Synthesis

A F
Jong-Tae Kim"

<8 °F>

R =RoMe ¢4 FE3 HIE (ASICs)E FdHEH= 4
s a]7]e HE o= Wye AFEE v]E o FE A9
7] @AA g3t AA AAYES ¥aste dsa B8 W
oA HAe AAE FedH =S FTu & HE dF WS
Computer-Aided DesignE=75& o] &8lo Al&§] 2 HEL
2RE AlFsle] Al2d BEa A9 32 S AAH HAXS
B A4 $F oA HE odF& AYgic. Ate A42
SWIR focal planel Z5-8 A HE AT E Agstes AEA e
71¢] H|g o =& AFHs IBM 1.0 vlo]aE 7|&¢ CMOS
B AL HLdo A¥9L § 49 4 AdE2FE AEEHE b

olel g AWty falAE 3709 3ol Wagrh

Key Words : Size Estimation, High—level Synthesis

1. Introduction

In early stage of signal processing
subsystem design it is required to accurately
estimate signal processor cost to determine
size and weight, impact on related
subsystems such as the power supply, and
to help evaluate the desirability and
feasibility of various tradeoffs. The objective
of processor cost estimation is to determine
the hardware requirements of a processor
configuration that implements the correct
behavior, meets real-time constraints, and

ideally has the minimum amount of
hardware. Unfortunately, there is no known
analytic solution to find the size of the
optimal signal processor configuration. It is
necessary to actually create a design,
evaluate it, and determine if 1t meets
requirements. Because the number of
possible designs is very large, and in fact is
exponential with respect to the many

variables involved, a search for the optimal
design is computationally intractable. In
spite of this complexity, we are frequently
called upon to estimate the size, weight, and

v A8 AFuuista A7) Mg FE B, Fag, T Associate Professor, School of Electrical and Computer

A% FUA AT HHF 300
email : jtkim@yurim.skku.ac.kr

Engineering
Boolgti= Ay ohar Al wtshE ATl el A
o) ste] 48 ¥ % Ut

__109_.

Alg] 8 S ol 8% AT A 7] v goFol A AlAIAT

power of the final configuration given only

the abstract behavior. Cost estimation
techniques used at industry include
extrapolation from similar programs and

derivation of gate counts directly from
behavioral specifications. These techniques
have the advantage of simplicity and speed.
Unfortunately they are grossly inaccurate
since they cannot account for placement and
routing effects. The approach we take is the
use of top-down design method and
Computer-Aided Design tools to automate
estimation tasks. Our cost estimation task
begins with behavior (e. g., multiply, shift),
progresses to register transfer structure (e.
g., adders, registers, multiplexors), and
estimate chip size and performance without
completing the register-transfer level(RTL)
synthesis, logic synthesis, and layout. It is
difficult to predict the low-level
characteristics of a design from higher
levels, since there are many different ways
of performing the transformation at each
step. To the best of knowledge, there is no
reported work on the cost estimation which
begins with behavior in algorithm level.

We use a CAD tool, LAST, for area and
delay estimation. LAST" which uses models
for standard cells and macros can predict
area based on empirically determined
formulas and then reconstructs the design,
estimating the effects of routing and
placement. Most of the reported area
estimation models assumed that layout are
done on gate arrays”. Grue et al.” looked
into the problem of predicting the wire
length distribution and estimating the
average wire length of IC’'s. Standard cell
area estimation” was proposed by Kurdahi
and Parker. New area and delay estimation”
from RTL description was reported. Also,
Nemani® and Najm studied the area and

power estimation from RTL description.

2. Processor Cost Estimation Method
from a Behavioral Specification

2. 1 Inputs to the Processor Cost
Estimation Task

The inputs needed for processor cost
estimation may include: system behavior
and constraints such as data rates, latency
from input to output, area and power
constraint.

The system behavior description specifies
what manipulations must be performed on
the data to accomplish the signal processing
task; it identifies what must be done, but
not how it is implemented in hardware or
software. The system behavior can be
specified in various formats, including
mathematical equations, data flow graphs,
software code, or the VHSIC Hardware
Description Language (VHDL). The preferred
level of description i1s RTL, or approximately
that of software languages such as C or
Fortran. Primitives at this level include
arithmetic operations such as addition and
multiplication, logic functions, and control

operations such as loops and branches.
Common higher level mathematical
operations, such as trigonometric functions

and differential equations, may be included,
but more esoteric operations (e. g.
centroiding) should be described using RTL
primitives or other common mathematical
operations.

Signal processing unit is a continuously
operating system, and real-time response is
required. Therefore the data rate defines the
performance constraint on the
implementation. Other implicit constraints on
the implementation include the minimization
of risk and production cost. The design
goal is to find the cheapest implementation
that can handle the data rates and has the
required reliability and lifetime.

2.2 Size Estimation Method from a
Behavioral Specification

Figure 1 shows the steps of our approach.
The major steps are partitioning, RTL. If
the entire design cannot fit on a single chip,
the behavior must be partitioned into smaller
regions, each of which will fit on a single
chip. Architectural synthesis is then
performed, producing RTL structure from the
behavior in each partitioned region. From

= 110 =

CRERDE RIS B @ aR s A2 41230 (1999.10)

System Level

Behavioral VHDL Description |

— =

parlitioning

— — -

Chip Level |_F"U|"—GhID Behavioral VHDL

Description

Architectural Synthesis

Register—
Transfer Structural VHDL Descriplion
Level
Processor Sizing
FFigure 1 Estimation Steps

the RTL structure we estimate chip size and
performance without completing the last
steps of design, which are RTL synthesis,
logic synthesis, and layout. Feedback on
area and timing estimates can be used if
necessary (o improve the partition and
synthesis results. For example, if a circuit
is smaller than expected the design can be
partitioned into fewer, larger regions (o
reduce the number of chip types required (or
a smaller chip size can be used). If the
areas of the partitioned regions turn out to
be greater than expected, the design can be
repartitioned into a greater number of
smaller regions (alternatively a larger chip
size can be used). If the performance
estimate exceeds requirements we may be
able to reduce the area by substituting
smaller, slower RTL modules or to serialize
the design and reduce the number of
operalors. The steps involved in cost
estimation with the example of signal
processing algorithm shown in Figure 1 are
described in more detail in the following
section.

3. Case Study

3.1 Overview of Signal Processing
Subsystem

Signal processing subsystem for
surveillance systems performs on-board

target identification, classification, and impact
point prediction. Because of high data rates
and real-time constraints it requires the
development of high performance signal and
data pru{:essursﬂ. Typical operations for
signal processor are the suppression of
gamma spikes, background clutter to increase
the signal to noise ration, and identification
of potential targets. It passes the processed
data nto data processing unit for target
classification and tracking. Figure 2 shows

a block diagram of signal processing
operation example.
9.3
Msampla/sec
SWIR AiD l Gain & Blas
channal convar slon ;E ’Imrrm:tllm g
_ 16
h 4
Gamma
corract lon
channal 16
L]
Dala T I Transversal
Processor € rﬁﬁ::“ t: fiiter [€
T rh:;nll

9.3
Msample/sec

Iigure 2 Signal Processing Subsystems Block
Diagram

3.2
Experiment

We describe each block using VHDL to
get the behavioral specification and we use
9.3 million-samples-per-second(MSPS) date
rates. The design goal for this experiment is
to find the cheapest implementation that can

Processor Cost Estimation

= 1Y -

AR B8 S o] 83 AB A7 9 0] §all S T Al A

handle the data rates.

3.2.1 Partitioning

We performed partitioning on the signal
processing algorithm shown in Fig 2. The
algorithms are linear, involving few
conditional branches and no internal loops.
The partitioning was guided by the structure
of the algorithms themselves (for example,
all circuits for the in-scan transversal filter
should ideally be placed on the same chip)
and by estimates of how much circuitry will
fit on a chip of the chosen size. For this
exercise we placed all operations up to and
including the in-scan filter into a single chip,
P1, which accepts all data coming from a
single A/D converter. The cross-scan
transversal filter and all subsequent signal
processing operations are placed on a second

--

Figure 3

chip, P2. Three processing chips are required
to process the data coming from each
channel, two of type P1 and one of type P2.

3.2.2 Architectural Synthesis

Architectural synthesis involves several
steps: clocking scheme synthesis, RTL
module selection, operation scheduling, and
module binding. To meet the 9.3 MSPS data
rate we need to accept data once every 110
ns. The critical path of our algorithm (the
longest path from input to output as defined
by data dependencies) is too long to be
executed in 110 ns using the fastest modules
in the IBM librarygj (for example, the
multiplies take 58 ns). For this reason we
must pipeline the design, that is, break up
the computations into stages separated by
stage latches. New data can be input to the

Time Step

--

gamna
thresho!d

--

Schedule for the In—scan Filter

= 132 =

G B e SR ME N B A R

A28 A2% (1999.10)

Table 1 Experiment Result

Chip type
P1 P2
(Gain correction,
Functionality Gamma suppression, Cross—scan filter,
In-scan filter Auto-threshold
Estimated size 9.1 mm x 9.2 mm 9.0 mm x 8.0 mm
Estimated pins 100 145
Estimated power 443 mW 613 mW

first stage of the pipe while previous data is
still being processed in later stages.
Assuming that data is input once every
clock period each stage of the pipeline
should take no longer than 110 ns.

RTL module selection is the choice of a
physical module type from the technology
library for every operation type 1n the
specification. For example, the IBM library
contains both carry—select and
carry -lookahead adders, either of which may
be chosen to implement an addition.
Assuming that every operation must
complete in a single clock period, for each
operation we chose the smallest module in
the library whose execution time was less
than the clock period.

The pipelined operation scheduling was
performed using an high-level synthesis
tool”®. It schedules operations into time
slots according to data dependencies, clock
period length, and estimated module delays;
multiple operations may be cascaded within
a single clock period. The schedule produced
for one portion of the SWIR algorithms, the
in-scan filter, is shown in Figure 3 as an
example. There are five stages, so the
latency of the pipeline is five times the clock
period, or 550 ns.

Module binding 1i1s the assignment of
physical modules to all scheduled operations.

For some designs it is possible to share
modules, that 1s, to assign a single physical
module to operations that execute during
different clock periods. For pipelined designs
such as ours that have inputs every clock
period, however, sharing is not possible, so a
separate module is bound to each operation.
In addition, stage latches are assigned to all
data values that are produced and consumed
in different clock periods and multiplexors
are assigned where needed. The output of
module binding is a structural netlist.

3.2.3 Prediction of Chip Area,
Performance, and Power

During architectural synthesis we make
use of area and delay estimates that must
be provided for every module in the library.
The area and delay of a chip cannot be
calculated directly from module values,
however, because of placement and routing
effect. To estimate the area of the chip we
therefore use a CAD tool, LAST, which
predicts chip size and delay from a
structural netlist. LAST partitions the design
down to a level at which it can predict area
based on empirically determined formulas
and then reconstructs the design, estimating
the effects of routing and placement. The
size estimates produced by LAST are shown
in Table 1. Circuits for both partitions are

= 113 =

Al&d 283 & ol 88 AEAE 7] v el Fol] A AT

comfortably within the limits of the chosen
chip size. Pin count 1s also at an acceptable
level.

IBM provides a formula which was used
to predict chip power for the 1.0 micron
library, as follows;

Power=1/2% Cx V?*x Fx SF

where C 1s the estimated load capacitance. V
i1s the power supply voltage, F 1s the clock
frequency, and SF is the switching factor.

The capacitance was assumed to be 0.5 plF
for every two cells, with a worst-case
power supply voltage of 5 volts, a clock
frequency of 93 MHz, and a macro input
switching factor of one-third. The resulting
power figures for both chips are shown in
Table 1.

4. Conclusion

In this paper we present the method of
signal processor cost estimation @ for
survelllance satellite system. The top—-down
design method and CAD tools used for
estimation provide more accurate estimates
than previous cost estimation technigues
used in Aerospace industry. But our
approach has certain limitations. We assume
a bit-slice standard cell organization with a
small number .of macros that are not
bit-sliced. Based on this study, we can go
further to automate the design and
estimation process for signal processing
algorithms in early stage of time.

References

1) F. J. Kurdahi and C. Ramachandran,
"LAST: a layout area and shape function
estimator for high level applications,” in
Proc. 2nd European Conf. on Design
Automation, pp. 351-355, 1991.

2) W. Heller et al., "Prediction of wiring
space requirements for LSL"” in Proc. of the
14th Design Automation Conf.,, pp. 20-22,

IEEE/ACM, June 1977.

3) C. Gura and J. Abraham, "Average
interconnection length and interconnection
distribution based on Rent's rule,” in Proc.
of the 26th Design Automation Conf. pp.
574-577, IEEE/ACM, June 1989.

4) F. J. Kurdahi and A. C. Parker,
"Techniques for area estimation of VLSI
layouts,” IEEE Trans. on CAD, vol. 8, pp.
81-92, January 19809.

5) A. Srinivasan, G. Huber, and D. LaPotin,
"Accurate area and delay estimation from
RTL descriptions,” IEEE Trans. VLSI
System, vol. 6. No. 1, pp. 168-172, March
1998.

6) M. Nemani and F. Najm, "High-level area
and power estimation for VLSI circuits,”
IEEE Trans. on CAD, vol. 18, No. 6, June
1999.

7) Y. Bar-Shalom and T. E. Fortmann,
Tracking and Data Association, Orlando, L,
Academic Press, 1988.

8) IBM 1.0 micron Radiation Harden CMOS
Standard Cell Library, IBM, 1992.

9) N. Park and A. Parker, "Sehwa: a
software package for synthesis of pipelines
from behavioral specifications,” IEEE Trans.
on CAD, vol. 7, no. 3, pp. 356-370, 1988.

10) J. Kim, "Automated synthesis of
time-stationary controllers for pipelined data

path of application specific integrated
circuits,” ¥r=r A KA 2 8 3] =%, A|4¢d |8
¥, pp. 2152-2162, 19971 8.

(1999 798U A4+ 1999 10¥18Y A9)

- 114 -

