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Bayesian Tests for Independence and Symmetry in
Freund’s Bivariate Exponential Model
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Abstract

In this paper, we consider the Bayesian hypotheses testing for independence
and symmetry in Freund’s bivariate exponential model. In Bayesian testing
problem, we use the noninformative priors for parameters which are improper
and are defined only up to arbitrary constants. And we use the recently pro-
posed hypotheses testing criterion called the intrinsic Bayes factor. Also we
derive the arithmetic and median intrinsic Bayes factors and use these results
to analyze some data sets.
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1. Introduction

Let’s consider a life testing experiment in which multiple two-component shared
parallel systems are put on test. In many cases of life testing and reliability analysis,
components are assumed to have independent life distributions. However, in many
life testing situations it is more realistic to assume some form of positive dependence
among components. This positive dependece among component life lengths arises
from common environmental stresses and shocks, from components depending on
common sources of power, and so on. As an example, we consider the paired organs
like kidneys, eyes, ears or any other paired organs in an individual as two component
system. In these cases, each paired organ is correlated each other. Freund(1961)
formulated a bivariate extension of the exponential model as a model for a system
where the failure times of the two components may depend on each other.

! Assistant Professor, Department of Statistical Information Science, Kyungsung University, Pusan,
Korea, 608-736.

2 Assistant Professor, Department of Statistics, Kyungpook National University, Taegu, Korea,
702-701.

3Lecturer, Department of Statistics, Kyungpook National University, Taegu, Korea, 702-701.



136 Jang Sik Cho - Dal Ho Kim - Sang Gil Kang

Kunchur and Munoli(1994) obtained minimum variance unbiased estimator for
the system reliability. Weier(1981), Hanagal and Kale(1992), Hanagal(1996) et al.
studied Freund’s model with complete data set.

In Bayesian testing problem, the Bayes factor under proper priors have been
very successful. However, limited information and time constraints often require the
use of noninformative priors. But noninformative priors such as Jeffrey’s(1961) or
reference priors (Berger and Bernardo(1989,1992)) are typically improper so that the
priors are defined only up to arbitrary constants which affects the values of Bayes
factors. So, Geisser and Eddy(1979), Spiegelhalter and Smith(1982), San Martini
and Spezzaferri(1984) and O’Hagan(1995) have made efforts to compensate for that
arbitrariness.

Berger and Pericchi(1996b) introduced a new model selection and hypotheses
testing criterion, called the Intrinsic Bayes Factor(IBF) using a data-splitting idea,
which would eliminate the arbitrariness of improper priors. This approach has shown
to be quite useful (Berger and Pericchi(1996a), Varshavsky(1996) and Lingham and
Sivaganesan(1997)).

In this paper, we consider a Bayesian approach to test independence and sym-
metry in Freund’s bivariate exponential model. Here we use noninformative priors
as improper priors. Also we derive intrinsic Bayes factors to solve our problem and
give some numerical results to illustrate our results.

2. Preliminaries

Let the random variables (X,Y’) follow Freund’s bivariate exponential model
with parameters § = (a,’,5,0'). Then the joint probability density function is
given as

oy _ JoBexp[-fy—(a+B-0F)x], y>z>0,
f(w,y.9) = {a’,@exp[——a’m—(a+ﬂ—a’)y], z>y>0. (21)

Now, we introduce the intrinsic Bayes factor in the general hypotheses testing.
As a matter of convenience, we introduce the following notations.

X = (X1,--+,X,) : observation with density f(x|6), where § € © is a finite
dimensional parameter and © is parameter space.

©; : parameter space under ith hypothesis H; , i =1,2,---,q.

f(z|6;) : the density under H; , i =1,2,---,q.

m;(8;) : the prior distribution under H; , i =1,2,---,q.

m;(x) : the marginal density of X under H; when use =;(6;),i = 1,2,---,q.

i : the prior probability of H; being true, 1 =1,2,---,¢.
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e (9 ) : the improper prior distribution under H; , i = 1,2, -
m{¥(x) : the marginal density of X under H; when use 7rN (0; ) i= 1 2,-

Then n¥(6;) is usually written as 7N (6;) « hi(6;), where h; is a function whose
integral over the ©;-space diverges. Formally, we can write 7V (6;) = ¢; hi(6)),
although the normalizing constant ¢; does not exist, but treating it as an unspecified
constant.

The posterior probability that H; is true is given as

P(Hix) = (3 Bip;,) (2.2)
=1 P

where Bj;, the Bayes factor of H; to H;, is defined by

m;(x) _ Jo, F(x16;)m;(6;)db;

Bji = mi(x) o, F(x|0:)mi(6;)d8;

(2.3)

The posterior probabilities in (2.2) are then used to select the most plausible hy-
pothesis. If one were to use some noninformative priors, then (2.3) becomes

BN = 'mév(x) — fej f(x|9j)7r]lv(gj)d0j
it = miv(x) - fei f(xlgi)ﬂ'fv(@i)dﬂi .

(2.4)

Hence, the corresponding Bayes factor, B , 18 indeterminate. One solution o
this indeterminancy problem is to use part of the data as a training sample. Let
x([) denote the part of the data to be so used and let x(—!) be the remainder of the

data, such that
0<mN(x(l)) <oo, i=1,---,4q. (2.5)

In view (2.5), the posteriors m} (8;|x(l)) are well defined. Now, consider the Bayes
factor, Bj;(1), for the rest of the data x(—!I), using 7¥(;|x(l)) as the priors:

Jo, Fx(=D)16;,x(1))m} (6;|x(1)) db;
Je, f(X( D165, x (1)l (6:]x(1)) db;

where BJI-}’ is given by (2.4) and

Bji(l) =

= B] - B (x(1)) (2.6)

ml (x(1)
m;" (x(1))
In (2.6), any arbitrary ratio, c;/c; say, that multiples BJI-Y would be cancelled

by the ratio ¢;/c; forming the multiplicand in BN (x(1)). Also, while the expression
(2.7) renders Bj;(!) in terms of the simpler margmal densties of x(!).

BY(x(l)) = (2.7)
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As training samples, Arithmetic and Median Intrinsic Bayes Factor play a fun-
damental role in our testing H;,% = 1,- -, g, we introduce the following definitions.

Definition 1.(Berger and Pericchi(1996b)) A training sample x(I), will called proper
if (2.5) holds and minimal if it is proper and none of its subsets is proper.

Definition 2.(Berger and Pericchi(1996b)) The Arithmetic Intrinsic Bayes factor
of H; to H; is

1
B4 =B - Z N (x(1)) (2.8)
where L is the number of all possible minimal training samples.

Definition 3.(Berger and Pericchi(1998)) The Median Intrinsic Bayes factor of H;
to H; is
B! = BY - ME[Bf (x(1))] (2.9)

where ME [Bg (x(1))] indicates the median, here to be taken over all the training
sample Bayes factors.

We can also calculate the posterior probability of H; using (2.5), where Bj; are
replaced by B! and B} from (2.8) and (2.9).

3. Bayesian Hypotheses Tests

In Freund’s bivariate exponential model, we want to test the hypotheses of sym-
metry and independence test. Thatis, Hy : a =0, o =0 vs. Hy : not Hy
and H3 : a=fand o = ' v.s. Hy : not H3. Consider samples of sizes n from
Freund’s model with parameters 0 = (a,d/, 3,3).

3.1 Symmetry Test

The goal here is to determine the set of all possible minimal training sample for
the data (x,y) to test H; : a = 0,0’ =0 v.s. Hy : not Hy. Here, let 6; = (o, )
and 62 = (a,d’,3,0). The noninformative priors for H; : a = 8,0/ = ' vs.
Hs : not H; are respectively given by

1
¥ (61) = P (3.1)
and

w6 = (3.2)
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To derive the marginals with respect to the noninformative priors given by (3.1) and
(3.2), we first observe that the joint pdf of (x,y) is given by

fxy) = I (s, i) B R
i=1
= am oy B e [—a@xﬁzy»}-exp [—ﬂ(zwﬂrzyi)}
€85 1€S,y i€S) 1€5,

- exp [—a’(z zi— Y yi)} - exp [—ﬂ’(Z(yi - wi))} (33)

€85, €8S, €8

where R; = I(X; < Y)), R = 1-R;, i = 1,2,---,nny = X R, ng =
SR, S ={ilRi=1,i=1,2-,n} S ={iR =1, i=1,2,---,n}.
Moreover, the joint pdf of any four pairéd observations, (z;,¥;), (Zk,¥k), (Ti, Y1),
(Zm,Ym) ,1 < j < k<l<m<n,is given by

H f(mivyi) = H {[ (xz,yz)] [ (-’L'uyz)]Rt}

ie{jklm} i€{sk.l,m}
!

- a"1. ﬁnlz . afnlng'n'l exp [_a(z x; + Z yz):, (3.4)

1€8; €857

-exp -—ﬁ(Z i+ ) yz] - exp [—a(z zi— ) yi)}

i€S’; €8/ i€S; €S’y

-exp [=B'(D (wi -—fci)] :

€5,
Here, n'y = Yic(ikim Biv W2 = Xiegjnrmy Bir S'1 = {i|Ri = 1, i € {5, k,1,m}},
and S’y = {i|Rf =1, 1 € {4, k,1,m}}.

In the following lemma, we give the marginal densities for any three paired ob-

servations.

Lemma 1. For the minimal training sample case, we have the marginal density
mzN((w]a yj)7 (mka yk)7 (.'13[, yl)’ ("En‘u ym)) under Hi’ 1= la 2 as follows.
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m{V((mJ" yj)’ (ilfk, yk)’ (ml, yl): (mm, ym)) (35)

s + ) L) L)
= 1+n'9)]" .
Yies, Ti+ 2ies, Ti dies Yi+ Dies, Ui

and

mé\/((w], yj)v (mkv yk)a (.’lJ[, yl): (zrm ym)
1 ni1 1 na
= [[(n'y) - T(n'))]- ( ) ( )
[ } ZieS’l z; + ZieS’-z Yi Zz‘eS’l z; + ZieS’g Yi

1 "2 1 ™
. = . 3.6
(ZieS’z Ti =~ D ies, yz-) (ZiGS’l (vi — xi)) (36)

Since the marginal densities m® ((z;,y;), (Zx, Yx) (T1, Y1), (Tm, Ym)) and md ((z;, y;),
(zx, yx), (1, 41), (Tm,Ym)) are finite for all 1 < j < k < I < m < n under each
hypothesis, we conclude that any training sample of size three is a minimal training
sample.

The marginal densities corresponding to the full data (X,Y) for test H; : a =
B, o = v.s. Hy:not Hy can also be expressed in the following lemma.

Lemma 2. For the full data, we have the marginal density mfv (x,y) under H;,i =
1,2 as follows.

1 m+ng
N 2
= [T :
mi (%) [ {m +n2)] (Ez‘esl Ti + s, $i>
1 ny+ng
. (3.7)
(Ziesl Yi + Lies, yi)
and
1 " 1 "
N 2 :
my (X, = [['(m)-T'(no)|”- e
2 ( y) [ ( l) ( 2)] (Ziesl z; + EieSz yz> (Ziesl T; + Ziesz %)
1 " 1 i
. ( ) . ( ) - (3.8)
EieSz T — Ziesz Yi ZiESl Vi — zz‘esl T;

To test Hy : a = 83, o' = v.s. Hy : not Hy, we get the following theorem from
Lemmas 1 and 2. ’
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Theorem 1. (i) The Bayes factor using the full data is given by

w _ m ()
2 mi(xy)

(i) The Bayes factor using the (x,y)(l) = ((z5, 95), (Th,ve), (2, 9)s (T, ym)) is
given by

(3.9)

M y)()
BY((x,y)() = S Y8l (3.10)
. m ((x,y)(2))
From the Theorem 1, the arithmetic intrinsic Bayes factor Bﬁ’ totest H; : a=
B, o' =3 vss. Hy : not Hy is given by

B%ﬂ%ézﬂwmm (3.11)
!

Next we use the another intrinsic Bayes factor called median intrinsic Bayes
factor (Berger and Pericchi(1998)). They showed that the median intrinsic Bayes
factor seems to be a simple and very generally applicable intrinsic Bayes factcr,
which works well for nested or non-nested models, and even for small or moderate
sample sizes.

From the Definition 3, Lemma 1, Lemma 2 and Theorem 1, we derive the median
intrinsic Bayes factor to test H; : a =0, o/ = v.s. Hy : not H; as follow:

B} = B - ME[B{}((x,y)())] (3.12)

3.2 Independence Test

The goal here is to determine the set of all possible minimal training sample for
the data (x,y) totest H3 : a=dao/, 8= v.s. Hy : not Hs.

Totest H3 : a=a/, 3 =0 v.s. Hi : not Hs, we must to determine the set
of all possible minimal training samples for the data (x,y). Here, let 83 = (a, §)
and 0y = (a,0d/,3,8'). The noninformative priors for H3 : a =da/, 8 = vs.
Hy : not Hj are respectively given by

HORP (3.13)

and 1
N
04) = ———.
7y (04) aa' B8
In the following lemma, we now derive the marginals with respect to the nonin-
formative priors given by (3.13) and (3.14).

(3.14)

141
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Lemma 3. We have the marginal density m¥ ((z;,;), (Tk, Uk), (21, %), (Tm)Ym)),
under H;, i = 3,4 as follows.

mév((wja yj)a (xky yk)’ (-'L'la yl)7 (mm, ym))

n'1+n'y 140y
= [[(ny +n'y))? ( . ) : ( . >(3.15)

Zz‘eS’l T + ZieS’z €I Ez’eS’l Yi + ziES'g Yi

and mf ((z,95), (zk, &), (1, ¥1)> (Tm, Ym)) is the same as md ((z;, ), (Tx, Y), (€0, w0),
(Tm,Ym)) of Lemma 1.
Also, we conclude that any training sample of size three is an MTS.

Nextly the marginal densities corresponding to the full data (X,Y) for test
Hy; : a=d, 8=0 vs. Hy : not H3 can also be expressed in the following
lemma.

Lemma 4. For the full data, we have the marginal density mf-v (x,¥), ¢ = 3,4 under
H;, i = 3,4 as follow.

1 ny+ny
mév((x,y)) = [[(m +n2)]2- (Z'es .mi‘*‘Z‘eS xz)

1 ny+ng
' : 3.16
(Ziesl Ui+ D ies, yi) (3.16)

and m{((x,y)) is the same as m} ((x,y)) of Lemma 2.
Nextly we get the following theorem from Lemmas 3 and 4.

Theorem 2. (i) The Bayes factor using the full data is given by

_mi (%)
m(x,y))

(ii) The Bayes factor using the (x,y¥)(!) = ((zj, 4;), (=, %), (T, ¥1), (Tm, Ym)) is
given by

m} (%,¥)(1))
my ((x,y)(1))

From the Theorem 2, the arithmetic and median intrinsic Bayes factor B3y to test
H; : a=d, =0 v.s. Hy : not H3 is given by

Bf = BY. 6 Y BY((x,y)(1) (3.19)
!

BY (3.17)

Bi((x,y)() = (3.18)

and
BY¥! = B - ME[BY((x,y)())]- (3.20)
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4. Simulation Study

In this section, we present two examples to illustrate for our test (i) H; : a =
B, o/ =p vs. Hy : not H and (ii) H3 : a=d,8 =03 v.s. Hy : not Hs.
When model uncertainty is assesed, we can take the prior probability of H; being
true, p; = 0.5, i = 1,2 and 7 = 3, 4, respectively.

Ezample 1 : The data given below are simulated data of size 10 from Freund’s
bivariate exponential model with parameters (o, o/, 3, 5') = (0.1,0.11,0.5,0.51).
Fe] 1 2 3 4 5 6 7 8 9 10 |
z; || 0397 .0954 .1595 .0095 .0044 .1448 .0552 .0852 .0386 .0392
¥ || 0658 .0890 .1195 .4834 .3926 .0050 .8101 .3798 .0719 .4821

For above data, Table 1 indicates Bayes factors and P(H;|x,y) for testing H, : o =
B, o =3 v.s. Hy : not Hy.

Table 1 : Bayes factors and P(H;|x,y) for testing
H:a=0,d =0 vs. Hy: not Hi.

By By’ PA(H|x,y) PMI(H|x,y)
148077 24.9908 0.0629 0.0384

Also, for above data Table 2 indicates Bayes factors and P(Hs|x,y) for testing
Hy : a=d, =0 vs. Hy : not Hs.

Table 2 : Bayes factors and P(H3|x,y) for testing
Hs:a=d, f=p vs. Hy: not Hs.
By B’ PA(Hy|x,y) PMI(Hlx,y)
5257 .9555 .6554 .5113

From table 1, since B4y = 14.8977, PA/(H|x,y) = 0.0629 and B}’ = 24.9908,
PMI(H,|x,y) = 0.0384, there is strong evidence for Hy and H; in terms of the pos-
terior probability, respectively. That is, there is strong evidence for non-symmetry
for above bivariate data in terms of the posterior probability PA/(Hy|x,y) = 0.9371
and PMI(Hy|x,y) = 0.9616.

From table 2, since Bgy = 0.5257, PA/(Hz|x,y) = 0.6554 and BM! = 0.9555,
PMI(H,| x,y) = 0.5113, there is no strong evidence for Hy and Hs in terms
of the posterior probability, respectively. That is, there is no strong evidence

for independence for above bivariate data in terms of the posterior probability
PAI(Hy|x,y) = 0.3446 and PMI(Hy|x,y) = 0.4887.
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Ezample 2 : The data given below are simulated data of size 10 from Freund’s bi-

variate exponential model with parameters (o, o/, 8, 8') = (0.1,0.3,0.12,0.32).

[i ] 1 2 3 4 5 6 7 8 9 10 |
z; || 0323 .0981 .0216 .4132 1.3709 .0651 .1823 .0086 .0005 .3848

¥ || -2103 .0130 .0990 .1089 .0322 .0155 .0539 .7758 .1906 .0264

For above data, Table 3 indicates Bayes factors and P(H;|x,y) for testing H; : a =
Bvs Hy : o #£0.

Table 3 : Bayes factors and P(Hj|x,y) for testing
Hi:a=08, o =8 vs. Hy: not Hy.
Bji By’ P (H)|x,y) PY(Hix,y)
.2985 .2422 .07701 .8050

Also, for above data Table 4 indicates Bayes factors and P(Hjs|x,y) for testing
Hs : a=d, =0 vs. Hy : not Hs.

Table 4 : Bayes factors and P(Hs|x,y) for testing
Hs:a=a/, =0 vs. Hy: not Hs.
B:I%Il Btji‘gl PAI(H3IX7 Y) PMI(H3|xa Y)
8.2228 6.6246 0.1084 0.1311

From table 3, since BA! = 0.2985, P4(H;|x,y) = 0.7701 and B}! = 0.2422,
PMI (Hi|x,y) = 0.8050, there is no strong evidence for H and H; in terms
of the posterior probability, respectively. That is, there is no strong evidence
for non-symmetry for above bivariate data in terms of the posterior probability

PAI(Hy|x,y) = 0.2299 and PMI(H,|x,y) = 0.1950.

From table 4, since By = 8.2228, P4!(Hj|x,y) = 0.1084 and BM! = 6.6246,
PMI (Hs|x,y) = 0.1311, there is evidence for Hy and Hj in terms of the poste-
rior probability, respectively. That is, there is evidence for independence for above
bivariate data in terms of the posterior probability PA/(Hyx,y) = 0.8916 and
PME(H,|x,y) = 0.8689. ‘

Therefore, the arithmetic and median intrinsic Bayes factors are computed based
on entire observations so that they give accurate interpretations and fairly steady
answers.
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