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Asymptotic Relative Efficiencies of the

Nonparametric Relative Risk Estimators for the
Two Sample Proportional Hazard Model
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Abstract

In this paper, we summarize some relative risk estimators under the two
sample model with proportional hazard and examine the relative efficiencies of
the nonparametric estimators relative to the maximum likelihood estimator of
a parametric survival function under random censoring model by comparing
their asymptotic variances.
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1. Introduction

We consider the problem of the estimation of the proportional hazard ratio for
clinical trial situations. In the two sample problem, the proportional hazard model
is specified that

A2(t) = OA(t),

where 0 is called relative risk. Thus we can see that the ratio of hazard function
has the interpretation of relative risk and has an intuitive appeal as a descriptive
statistics.
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In the proportional hazard model, if we know the lifetime and censoring distri-
butions, then the relative risk is easily estimated by maximum likelihood methods.
But if the distributions are not specified, then it can be obtained only one by non-
parametric methods. The nonparametric proportional hazard model was derived
by Cox(1972) for the analysis of survival data. In the Cox’s proportional hazard
model, if p =1 and z is the indicator function for treatment group, then the model
is reduced to

Az(t) = eﬁ/\l(t),

where 6 = € is called the relative risk. Cox(1975) proposed the partial likelihood
method that can be used for inference about relative risk, and Efron(1977) showed
that maximum partial likelihood is asymptotically efficient.

On the other hand, Begun and Reid(1983) and Andersen(1983) proposed the
generalized rank estimator of relative risk, and proved that each test in these papers
is equivalent to a consistent and asymptotically normally distributed estimator of
the hazard ratio in the two sample model with proportional hazard.

In this paper, we summarize some relative risk estimators under the two sample -
mode! with proportional hazard and examine the asymptotic efficiencies of the non-
parametric estimators relative to the maximum likelihood estimator of a parametric
survival function under random censoring model by comparing their asymptotic
variances.

2. Estimation of Relative Risk

Let T, T2, -+, Tin, and T2, Thg, - -+, Ton, be nonnegative random lifetimes
with absolutely continuous distribution function F; and F3, respectively, and let
Cu, Cia, * -+, Cipn, and Cy, Cy2, - -+, C2y, be nonnegative random censoring times
with absolutely continuous distribution function G; and G, respectively. By random
censorship model, the true lifetimes T;;’s are censored on the right by the censoring
times Cj;’s, so that we only observe

(Xij?eij)7 1= 1727 .7 - 1’27 sy, Ny,
where
Xij = min(T3, Cyj), €5 = I(Ti; < Cij),

and the censoring times C;; are assumed to be independent of the lifetimes T;;.

Let n = n; + ng.and Y = (Y},Ys,---,Y,) be the combined ordered survival
times, without regard to censoring. Then we define the sample indicators of the
corresponding Y, ‘ ‘

Z= (ZlaZ27"'7Zn):
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where
1 if Y; from sample 1,
Z; =
0 if Y; from sample 2,

and a vector of censoring indicators
0= (61762’ th 1571)7

where ] . .
1 if Yj is uncensored observation,
d; =

0 if Yj;is censored observation.
Further, we also define the number at risk in the each sample at Y; by

n n

ny; = Z(l - Zk), n2j = Z Zk.

k=j k=j
Following sections deal with the several estimators of relative risk.

2.1 Maximum Likelihood Estimator

Let 7). and T5. be independent identically distributed (i.i.d.) exponential ran-
dom variables with parameter o; and ag, respectively, and let C;. and Cs,. be i.i.d.
exponential random variables with parameter o) and o, respectively. Then the
likelihood is proportional to

n;
L x a?"" exrp [—a,- Z Xij]
j=1

where n,; is the number of uncensored observations in each sample. Therefore, the
maximum likelihood estimator (MLE) of ¢; is

~ Ny, . .
Q= ———, 1=1,2, 1
and the equation (1) can be written in terms of notations of the combined sample ;
> i-1Y(1=2Z;) i=1Y5Z;

Since a; is the hazard function of the exponential distribution, the MLE of § is given

by
G ( =1 5ij)/< i=1 szj) |
(Sris0-2)) /(S v0- 7))

105
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and \/ﬁ(c’/?\M LE — 0) is asymptotically normal with mean 0 and variance

62 ( Jo? m(1 = Hy () + m(1 — Ha(t))0) A (t)dt )

mne\fg (1= Hi(®)Mi(t)dt [5° (1 — Ha(t))Ao(t)dt )"
Here n; = limy, .o % and 1 — H(t) is the survival function of X;., that is
1-Hi(t) =[1-F(@®I[1-Gi?)]

=exp[—(a; +aj)t], i=12.

2.2 Maximum Partial Likelihood

We consider the special case of Cox’s proportional hazard model in which p = 1
and covariate vector is the sample indicator function. Then the Cox’s proportional
hazard model is reduced to

Ao(t) = P (2),

where 6 = € is called the relative risk. This model is equivalent to the two sample
problem with proportional hazard. Thus the estimator of relative risk is obtained
by the following Cox’s partial likelihood with logé = 3,

L(B) = ﬁ(wiﬁﬁ)@-

j=1

Then the partial likelihood estimator §COX of 0 is €, where B is the solution to

0 = ;9% log L(3)
=9 [21'— ﬂ——] (2)

ot (ny +n2jeﬁ)

Solving the equation (2), which usually requires a iterative method. Therefore,
if 3% is an initial value, then 3 is obtained by the Newton-Raphson’s method,

. 0
B =B +i 1<B°)~6ﬁlog L3,

where
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Cox asserted that 3 is asymptotically normal with mean 3 and variance i~ 18), if
ﬂ is the solution of the equation (2). Thus the estimated variance of 000 X is obtained
by multiplying i~1(3) by (¢°)?, using the delta method, and that vn (OCOX 0) is
asymptotically normal with mean 0 and variance

62 (/00 (1— H ()1 - Hz(t))())\l(t)dt)"l
mn2 \Jo m(1— Hi(t)) +n2(1 — Ha(t))8

2.3 Generalized Rank Estimator

Begun and Reid(1983) and Andersen(1983) derived the generalized rank estima-
tor of relative risk given by

é‘ fo t)dAZ t)
J5° K()dAy(2)’

where K(t) is a predictive random weight function that depending only on the
observations up to ¢, just before time t, and A; i(t) is the Nelson-Aalen estimator
(Nelson(1972), Aalen(1978)) of the cumulative hazard function for each sample.

Let U;(t) is defined by the subdistribution function of the observed death from
each sample:

dUs(t) = (1 = Hi®))Ai(2).

Then
-~ dU;(t) 5j(1 - zj)
dA t = = ,
1( ) 1-— Hl(t) nlj
-~ dUz(t) (Sij
dA t = et .
2( ) 1-— Hg(t) T2

Thus \/ﬁ(gK — 6) is asymptotically normal with mean 0 and variance

)] H1 H;
2(f0 2“)"7731 Hl(t ;7%1 H;Egt ’\l(t)dt)
[o° K2(t)M(t)dt]?

(Andersen(1983)).

We now introduce the two types generalized rank estimators by the choice of
K(t).

First, we consider the generalized rank estimator using the weight function, K (t),
given by

K(t) = "%
ny; + ng;
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Then the estimator §M H can be obtained as follows :

O = Yi=1(8z5m5)/(n — j + 1)
i=1(0;(1 — zj)ng;) /(n— 5 + 1)

and \/ﬁ(gMH — 8) is asymptotically normal with mean 0 and variance
" 5 B L m (1 — Ha(9) + (1 - Hz(t))H]Al(t)dt)

M 05> C= O () e

Secondly, taking the weight function as follows:

K(t) = Nq;Ng;.

Then the generalized rank estimator, namely é\GH, is given by

Borr = 2j=1925m;
223=105(1 — zj)ng;’

and v/n(fcy — 6) is asymptotically normal with mean 0 and variance

6 (fo (1 — Hi($))(1 — Ha($))[m1 (1 — Hi(t)) +m2(1 — H2(t))9]’\l(t)dt)
Mg Olfo° (1= Hi(t))(1 — Ha(t)) M (t)dt]?

3. Relative Efficiency

In this section, we consider the asymptotic relative efficiencies of the relative
risk estimators. The relative efficiencies are obtained by comparing their asymptotic
variances which are presented in the previous section.

Since §MLE is a maximum likelihood estimator of relative risk, the é‘M g always
has a smaller asymptotic variance than any other estimators of §, and the asymptotic
variances of generalized rank estimators, 8, can be written

92<f0 K () 2B, (t)dt>

TS MO A0
[o” K> ()M (t)dt)?

n

Thus we can see that Cox’s estimator of 6 is at least as efficient as any estimator §K
by the inequality

m(1 = Hy(t)) + ma(l — Ha(8))0
[ xw (1= Hy(0))m(1 — Hye 1O
© m(1— Hi(t))n2(1 — Ha(t))0
o B o o RO

> ( /0 ” K(t)/\l(t)dt)z.
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Here the last inequality holds from the Cauchy-Schwarz inequality.

In particular, if ¢ = 1, then the efficiency of the estimator BM g is that of
(300 x- Moreover, if the distribution in each sample is exponentially distributed with
the same parameter and censoring scheme, then the asymptotic variances of the
estimators, gMLE; fcox, and §MH, are the same.

To demonstrate some results of the above mentioned, we examine asymptotic
efficiencies of the nonparametic estimators relative to the maximum likelihood esti-
mator, which are computed for several exponential lifetime distributions and censor-
ing scheme with various censoring rate and for true value of relative risk 8 = 1(0.5)3
and sample ratio n; = 1, 3,3,%,%, i=1,2, and m 4+ =1.

Table 3.1 summarizes the relative efficiencies of nonparametric relative risk es-
timators relative to maximum likelihood estimator, such as Ef f), Ef f;, and Ef fs,
where

Effi = (AVarfgox/A.Varuig),
Effo=(AVar Oyu/AVar OyLE),
Effs=(AVar 8cr/AVar OyiE).

From Table 3.1, we can observe the following facts :

1. When the lifetime distribution in each sample is  exponentially distributed with
the same parameter and censoring scheme, the ) MLE, 900 X andd, mH have the
same efficiencies.

2. In most cases, the Ef f; are similar to Ef f; and the Ef f; are slightly larger
then Ef f; and Ef f,.

3. Obviously, the Ef f1, Ef fo and Effs get larger as the censoring rate and 6
increase, regardless of sample ratio.
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Table 3.1 Asymptotic Relative Efficiencies of the Nonparametric Estimators

Sample Ratio Effi Effo Effs

0=1.0 m = 0.25 19 = 0.75 1.00000 1.00000 1.33333

m = 0.33 no =0.67 | 1.00000 1.00000 1.33333

Censoring Rate m = 0.50 ny = 0.50 1.00000 1.00000 1.33333

Sample 1 : 0% m = 0.67 n = 0.33 1.00000 1.00000 1.33333
Sample 2 : 0% m =075 ny =025 1.00000 1.00000 1.33333

=15 m =025 n, =0.75 1.03602 | 1.03733 1.46948
m = 0.33 7, = 0.67 1.03940 1.04079 1.43848
Censoring Rate m = 0.50 n2 = 0.50 1.03918 1.04036 1.37648

Sample 1: 10% | m = 0.67 n, =0.33 | 1.03174 | 1.03243 | 1.31448
Sample 2: 10% | 7, = 0.75 m, = 0.25 | 1.02576 | 1.02620 | 1.28348

0=20 m =025 ny =075 1.21301 1.22810 1.77736
' 1 = 0.33 12 = 0.67 1.21186 1.22587 1.68706
Censoring Rate m = 0.50 12 = 0.50 1.18407 1.19405 1.51773

Sample 1 : 10% m = 0.67 ny = 0.33 1.13525 1.14058 1.36195
Sample 2 : 30% m =0.75 n2 =0.25 1.10544 1.10869 1.28865

0 =25 m =025 n =075 1.09514 1.10984 1.63902
m = 0.33 n2 = 0.67 1.10363 1.11865 1.59153
Censoring Rate m = 0.50 72 = 0.50 1.10518 1.11769 1.49061

Sample 1: 30% | n1 =067 1, =033 | 1.08883 | 1.09648 | 1.38092
Sample 2: 10% | 7 =075 7o =0.25 | 1.07404 | 1.07902 | 1.32242

0 =30 m =025 n =0.75 1.28547 1.32843 1.95217
m = 0.33 n2 = 0.67 1.28922 1.33097 1.85364
Censoring Rate m = 0.50 7 =0.50 1.26392 1.29706 1.65656

Sample 1: 30% | m =067 7o =0.33 | 1.20549 | 1.22464 | 1.45947
Sample 2: 30% | 71 =0.75 7o =0.25 | 1.16517 | 1.17718 | 1.36094




