흑연로원자흡수분광법에 의한 쌀분말시료중의 비소, 납, 셀레늄의 정량

Determination of Arsenic, Lead and Selenium in Rice Flour by Graphite Furnace Atomic Absorption Spectrometry

  • 조경행 (한국표준과학연구원 화학방사선연구부) ;
  • 서정기 (한국표준과학연구원 화학방사선연구부)
  • Cho, Kyung-Haeng (Division of Chemistry and Radiation, Korea Research Institute of Standards and Science) ;
  • Suh, Jung-Ki (Division of Chemistry and Radiation, Korea Research Institute of Standards and Science)
  • 투고 : 1998.10.28
  • 발행 : 1999.04.25

초록

쌀분말시료중에 미량으로 존재하는 비소(As), 납(Pb), 셀레늄(Se)등을 분석하기 위하여 매질변형방법에 의한 흑연로원자흡수분광법을 이용하였다. 흑연로내에서 측정원소의 열안정성과 간섭매질의 휘발성을 증가시키기 위해 매질변형재로서 팔라듐과 질산마그네슘 혼합물을 사용하였다. 몇가지 금속원소(As, Cd, Cu, Pb, Se, Zn)에 대해 팔라듐과 질산마그네슘 혼합물에 의한 매질변형효과를 검토한 결과 As, Pb, Se에 대해 뚜렷한 회화 및 원자화 온도의 증가와 흡수도 상승효과를 확인 하였다. 마이크로파 산가압분해법에 의해 쌀분말시료를 분해하고 표준물첨가법에 의해 As, Pb, Se을 분석하였다. 바탕선 보정에는 Zeeman effect를 이용하였으며 특성농도는 건조시료기준 As 26 ng/g, Pb 18 ng/g, Se 24 ng/g이었다.

A graphite furnace atomic absorption spectrometry (GFAAS) with matrix modification has been used to determine trace amounts of arsenic, lead and selenium in rice flour samples. A mixed solution of palladium and magnesium nitrate was used as a matrix modifier to convert the analyte elements into a phase of higher thermostability and to increase the volatility of concomitants in graphite furnace. Matrix modification effects by the mixed solution were investigated for several elements (As, Cd, Cu, Pb, Se, Zn). It has been found that the matrix modifier substantially increase the pyrolysis and atomization temperature, and absorbance for As, Pb and Se. The concentration of As, Pb and Se in rice flour samples were determined by standard addition method with Zeeman background correction after microwave acid digestion. In this method the characteristic concentrations of As, Pb and Se are 26 ng/g, 18 ng/g, 24 ng/g on the basis of dry sample respectively.

키워드

참고문헌

  1. Clinical Disorders of Fluid and Electrolyte Metabolism M. H. Maxwell;C. R. Kleema;R. G. Narins
  2. Talanta v.29 H. Robberech;R. Van Grieken
  3. J. Assoc. Off. Anal. Chem. v.61 J. Flanzak
  4. J. Anal. At. Spectrom. v.9 M. Veber;K. Cujes;S. Gomiscek
  5. Analyst v.115 K. McLaughlin;D. Dadgar;M. R. Smyth;D. McMaster
  6. J. Radioanal. Nucl. Chem. v.179 D. A. Becker;D. L. Anderson;R. M. Lindstrom;R. R. Greenberg;K. M. Garrity;E. A. Mackey
  7. Anal. Sci. & Technol. v.11 K. H. Cho;C. J. Park;J. C. Woo;J. K. Suh;M. S. Han;J. H. Lee
  8. J. Anal. At. Spectrom. v.10 A. Lasztity;A. Krushevska;M. Kotrebai;R. M. Barnes;D. Amarasiriwardena
  9. J. Anal. At. Spectrom. v.7 B. Welz;G. Schlemmer;J. R. Mudakav
  10. Analyst v.120 M. E. Soares;M. L. Bastos;M. Ferreira
  11. J. Anal. At. Spectrom. v.10 I. Harrison;D. Lillejohn;G. S. Fell
  12. At. Absorpt. NewsL. v.14 R. D. Ediger
  13. Anal. Chem. v.47 E. L. Henn
  14. At. Spectrosc. v.3 W. Slavin;G. R. Carnrick;D. C. Manning
  15. Spectrochim. Acta v.39B B. Welz;G. Schlemmer;U. Voellkopf
  16. Anal. Chem. v.54 W. Slavin;G. R. Carnrick;D. C. Manning
  17. At. Spectrosc. v.2 E. J. Hinderberger;M. L. Kaiser;S. R. Koirtyohann
  18. Acta. Chem. Sin. v.39 X.-Q. Shan;Z.-M. Ni
  19. Spectrochim. Acta v.41B G. Schlemmer;B. Welz
  20. Spectrochim. Acta v.46B H. Qiao;K. W. Jackson
  21. J. Anal. At. Spectrom. v.7 B. Welz;G. Schlemmer;J. R. Mudakavi
  22. Certificate of Analysis, Standard Reference Material 1568a National Bureau of Standards
  23. CRC Handbook of Chemistry and Physics, (67th Ed.) R. C. Weast
  24. Guide to the Expression of Uncertainty in Measurement, (1st Ed.) ISO