
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 12, August 1999

ON THE RANGE OF DERIVATIONS

Ick-Soon Chang

ABSTRACT. In this paper we will show that if [G(y), x]D(x) lies in 
나le nil radical of A for all x e A, then GD maps A into the radical, 
where D and G are derivations on a Banach algebra A.

1. Introduction
Let A be an algebra over a complex field C. The Jacobson radical 

of A 이id the nil radical of A will be denoted by rad(A) and nil (A), 
respectively. We write [x^y] for xy — yx^ and use 나le identities [xy, 히 = 

lxi z]y + 씨初 z], 旧浦히 = [rr, y]z + y[x^ z]. Recall that an algebra 
A is prime if aAb = {0} implies that either a = 0orb = 0. A 
linear mapping D from A to A is called a derivation if D(xy、)= 
D{x)y + xD(y) holds for all x^y e A.

Singer and Wermer [6] proved that every continuous derivation on a 
commutative Banach algebra maps the algebra into its radical. They 
also made a very insightful conjecture, namely that the assumption 
of continuity was unnecessary. This became known as the Singer- 
Wermer conjecture and was proved in 1988 by Thomas [7]. The so- 
called noncommutative Singer-Wermer conjecture was proved that ev­
ery derivation B on a Banach algebra A such that [D{x\ x] e rad(A) 
for all a; E A maps the algebra into its radical. As an evidence for the 
validity of the conjecture, Mathieu showed that the above conclusion
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holds if the condition [P(rr), x] e rad(A) for all G A is replaced by 
the condition [D(x)^x] 6 nil (A) for all a; e A [3, Theorem 1]. In this 
paper we will show that the condition [G(g), 씨 Z)(z) e nil (A) for all 
x^y E A also guarantees the result of Mathieu.

2. The Results
To prove 이ir main theorem, we shall need the following purely 

algebraic result.

Lemma 2.1. Let D and G be derivations on a noncommutative 
prime algebra A such that \G{y\x\D(x) = Q for all x^y e A. Then 
we have either D = Q or G = Q.

Proof. Suppose that

(1) [G(g), 끼 £&) =。

for all x^y e A. Taking y = yD(x) in (1), we obtain

(2) 싱(g)[D(z), 씨£)(z) + [y, x]G(D(x))D(x) = 0

for all x^y E A. Replacing y by xy in (2), we have

(3) G(x)y[D(x\ x\D{x) = 0

for all x^y E A. Since A is prime, we get either G(x) = 0 or 
씨£)(z) = 0 for any x e A. Thus A is the union of its sub­

sets Ai = {x e A : G{x) = 0} and A2 = {x e A : \D(x)^x\D{x) = 0).
Suppose G 尹 0 and Z)供 0. The principal results in [9] then tell us 

that A and 丰 A. Thus there exist x^y e A such that x 
and y A2- Hence x e A2 and y E Ai，If we consider x + Xy for all 
A G C, then we see that either x + Xy E A± or x + Ay E A2- In case 
x + Xy E we have

(4) G(x) = 0.
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In case x + Ay E A2, we get

⑸

X{[D(x),x]D(y) + [D(x),y]D(x) + 끼」D(z)}

+ 人2{[以力,05/) + [」%/), 끼以饥 + lD(y\y]D(x)}

+ X3[D(y),y]D(y) = 0.

Thus one of these two possibilities holds. But (5) has more than 
three solutions. This contradicts the assumptions that G{x) ^=- 0 and 
[D{y\y\D{y)寸二 0. This completes the proof. □

Theorem 2.2. Let D and G be continuous derivations on a Ba­
nach algebra A such that [G(y),x]D(x) € rad(A) for all x.y e A. 
Then we have GD(A) 으 rad(A).

Proof. Let J be a primitive ideal of A. Since D and G are con­
tinuous, by [4, Theorem 2.2], we have 1?(J) C J and G(丿)C J. 
Then we can define derivations Dj and Gj on A/J by Dj(x + 丿)= 

D(x) + J, Gj(x + J) = G(x) + J for all a; e A. The factor algebra 
A/J is prime and semisimple, since J is a primitive ideal. Johnson 
이id Sincliar [2] have proved that every derivation on a semisimple Ba­
nach algebra is continuous. Combining this result with Singer-Wermer 
theorem, we obtain that there are no nonzero derivations on a com­
mutative Banach algebra. Hence in case A/J is commutative, we have 
both Dj = 0 and Gj = 0. It remains to 안low that either Dj = 0 
or Gj = 0 in the case when A/J is noncommutative. Note that the 
intersection of all primitive ideals is 난le radical. The assumption of 
the theorem

[G(g),씨」D(z) € rad(A) (x,y e A)

gives

[Gj(y + J),x + J]Dj(x + J) = J (x, y 6 A).
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All the assumption of lemma 2.1 is fulfilled. Thus we have GjDj = 0 
in any case . Hence we see that GD(A) C J since J is a primitive 
ideal. This completes the proof. □

From the above result, we prove the following theorem.

Theorem 2.3. Let D and G be derivations on a Banach algebra 
A such that [GQ/), 씨 G nil (A) for all x^y E A. Then we have 
GD(A) Crad(A).

Proof. Let J be any primitive ideal of A. Using Zorn's lemma, we 
can find a minimal prime ideal P contained in J)and hence D(P) 으 P 
and G(P) C P. Suppose first that P is closed. Then derivations D 
and G on a Banach algebra A induce derivations D and G on a Banach 
algebra A/P defined by

D(x + P) = D(x) + P, G(x + P) = G(x) + P

for all x E A, In case A/P is commutative, D(A/P) and G{A/P) are 
contained in the radical of A/P by [7]. In case A/P is noncommuta- 
tive, Lemma 2.1 implies that either D = 0 or G = 0 on A/P^ since 
A/P is prime and [G(y + P)^x + P]D(x + P) = P for all y € A. In 
both cases, GD{A/P) C J/P. Consequently we see that GD(A) 으 J. 
If P is not closed, then we see that S(D) C Fby [1, Lemma 2.3] (where 
S(D) is the separating space of D). Then, by [5, Lemma 1.3], we have 
S(QpD) = Qp(S(Z))) = {아, where Qp is the quotient map from A 
to A/P. From this QpD is continuous. Therefore QpD(P) = {0} on 
A/P, that is, Z)(F) C P. In the same fashion, G(F) 으 P. From 난lis 
we can also define continuous derivations D and G on A/P by

D(x + 戸)=D(x) + P, G(x + 戸)=G(x) + P

for all x e A. Hence [G(y + P),x + P]D(x + F) is contained in 
the radical of A/P. By Theorem 2.2 GD(A/P) is contained in the
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radical of A/P. Thus D{A/P) 으 J/P or G(A/P) C J/F. Therefore 
GD(A) C J, This completes the proof. □

The below result is an immediate consequence of Theorem 2.3.

Corollary 2.4. Let D and G be derivations on a semisimple 
Banach algebra A such that [G(y),x]D(x) = 0 for all x.y E A. Then 
we have GD = 0.
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