ON THE RANGE OF DERIVATIONS

ICK-SOON CHANG

ABSTRACT. In this paper we will show that if [G(y), x]D(x) lies in the nil radical of A for all $x \in A$, then GD maps A into the radical, where D and G are derivations on a Banach algebra A.

1. Introduction

Let A be an algebra over a complex field \mathbb{C} . The Jacobson radical of A and the nil radical of A will be denoted by rad(A) and nil(A), respectively. We write [x,y] for xy-yx, and use the identities $[xy,z]=[x,z]y+x[y,z], \ [x,yz]=[x,y]z+y[x,z]$. Recall that an algebra A is prime if $aAb=\{0\}$ implies that either a=0 or b=0. A linear mapping D from A to A is called a derivation if D(xy)=D(x)y+xD(y) holds for all $x,y\in A$.

Singer and Wermer [6] proved that every continuous derivation on a commutative Banach algebra maps the algebra into its radical. They also made a very insightful conjecture, namely that the assumption of continuity was unnecessary. This became known as the Singer-Wermer conjecture and was proved in 1988 by Thomas [7]. The so-called noncommutative Singer-Wermer conjecture was proved that every derivation D on a Banach algebra A such that $[D(x), x] \in rad(A)$ for all $x \in A$ maps the algebra into its radical. As an evidence for the validity of the conjecture, Mathieu showed that the above conclusion

Received by the editors on June 30, 1999.

¹⁹⁹¹ Mathematics Subject Classifications: Primary 46H05, 46H20.

Key words and phrases: Banach algebra, derivation, prime algebra, nil radical, radical.

holds if the condition $[D(x), x] \in rad(A)$ for all $x \in A$ is replaced by the condition $[D(x), x] \in nil(A)$ for all $x \in A$ [3, Theorem 1]. In this paper we will show that the condition $[G(y), x]D(x) \in nil(A)$ for all $x, y \in A$ also guarantees the result of Mathieu.

2. The Results

To prove our main theorem, we shall need the following purely algebraic result.

LEMMA 2.1. Let D and G be derivations on a noncommutative prime algebra A such that [G(y), x]D(x) = 0 for all $x, y \in A$. Then we have either D = 0 or G = 0.

Proof. Suppose that

$$(1) [G(y), x]D(x) = 0$$

for all $x, y \in A$. Taking y = yD(x) in (1), we obtain

(2)
$$G(y)[D(x), x]D(x) + [y, x]G(D(x))D(x) = 0$$

for all $x, y \in A$. Replacing y by xy in (2), we have

(3)
$$G(x)y[D(x),x]D(x) = 0$$

for all $x, y \in A$. Since A is prime, we get either G(x) = 0 or [D(x), x]D(x) = 0 for any $x \in A$. Thus A is the union of its subsets $A_1 = \{x \in A : G(x) = 0\}$ and $A_2 = \{x \in A : [D(x), x]D(x) = 0\}$.

Suppose $G \neq 0$ and $D \neq 0$. The principal results in [9] then tell us that $A_1 \neq A$ and $A_2 \neq A$. Thus there exist $x, y \in A$ such that $x \notin A_1$ and $y \notin A_2$. Hence $x \in A_2$ and $y \in A_1$. If we consider $x + \lambda y$ for all $\lambda \in \mathbb{C}$, then we see that either $x + \lambda y \in A_1$ or $x + \lambda y \in A_2$. In case $x + \lambda y \in A_1$, we have

$$(4) G(x) = 0.$$

In case $x + \lambda y \in A_2$, we get

(5)

$$\lambda\{[D(x), x]D(y) + [D(x), y]D(x) + [D(y), x]D(x)\}$$

$$+ \lambda^{2}\{[D(x), y]D(y) + [D(y), x]D(y) + [D(y), y]D(x)\}$$

$$+ \lambda^{3}[D(y), y]D(y) = 0.$$

Thus one of these two possibilities holds. But (5) has more than three solutions. This contradicts the assumptions that $G(x) \neq 0$ and $[D(y), y]D(y) \neq 0$. This completes the proof.

THEOREM 2.2. Let D and G be continuous derivations on a Banach algebra A such that $[G(y),x]D(x) \in rad(A)$ for all $x,y \in A$. Then we have $GD(A) \subseteq rad(A)$.

Proof. Let J be a primitive ideal of A. Since D and G are continuous, by [4, Theorem 2.2], we have $D(J) \subseteq J$ and $G(J) \subseteq J$. Then we can define derivations D_J and G_J on A/J by $D_J(x+J) = D(x) + J$, $G_J(x+J) = G(x) + J$ for all $x \in A$. The factor algebra A/J is prime and semisimple, since J is a primitive ideal. Johnson and Sincliar [2] have proved that every derivation on a semisimple Banach algebra is continuous. Combining this result with Singer-Wermer theorem, we obtain that there are no nonzero derivations on a commutative Banach algebra. Hence in case A/J is commutative, we have both $D_J = 0$ and $G_J = 0$. It remains to show that either $D_J = 0$ or $G_J = 0$ in the case when A/J is noncommutative. Note that the intersection of all primitive ideals is the radical. The assumption of the theorem

$$[G(y), x]D(x) \in rad(A) \ (x, y \in A)$$

gives

$$[G_J(y+J), x+J]D_J(x+J) = J \ (x, y \in A).$$

All the assumption of lemma 2.1 is fulfilled. Thus we have $G_JD_J=0$ in any case. Hence we see that $GD(A)\subseteq J$ since J is a primitive ideal. This completes the proof.

From the above result, we prove the following theorem.

THEOREM 2.3. Let D and G be derivations on a Banach algebra A such that $[G(y), x]D(x) \in nil(A)$ for all $x, y \in A$. Then we have $GD(A) \subseteq rad(A)$.

Proof. Let J be any primitive ideal of A. Using Zorn's lemma, we can find a minimal prime ideal P contained in J, and hence $D(P) \subseteq P$ and $G(P) \subseteq P$. Suppose first that P is closed. Then derivations D and G on a Banach algebra A induce derivations \bar{D} and \bar{G} on a Banach algebra A/P defined by

$$\bar{D}(x+P) = D(x) + P, \ \bar{G}(x+P) = G(x) + P$$

for all $x \in A$. In case A/P is commutative, $\bar{D}(A/P)$ and $\bar{G}(A/P)$ are contained in the radical of A/P by [7]. In case A/P is noncommutative, Lemma 2.1 implies that either $\bar{D}=0$ or $\bar{G}=0$ on A/P, since A/P is prime and $[\bar{G}(y+P),x+P]\bar{D}(x+P)=P$ for all $x,y\in A$. In both cases, $\bar{G}\bar{D}(A/P)\subseteq J/P$. Consequently we see that $GD(A)\subseteq J$. If P is not closed, then we see that $S(D)\subseteq P$ by [1, Lemma 2.3] (where S(D) is the separating space of D). Then, by [5, Lemma 1.3], we have $S(Q_{\bar{P}}D)=\overline{Q_{\bar{P}}(S(D))}=\{0\}$, where $Q_{\bar{P}}$ is the quotient map from A to A/\bar{P} . From this $Q_{\bar{P}}D$ is continuous. Therefore $Q_{\bar{P}}D(\bar{P})=\{0\}$ on A/\bar{P} , that is, $D(\bar{P})\subseteq \bar{P}$. In the same fashion, $G(\bar{P})\subseteq \bar{P}$. From this we can also define continuous derivations \bar{D} and \bar{G} on A/\bar{P} by

$$\widetilde{D}(x+\bar{P}) = D(x) + \bar{P}, \ \widetilde{G}(x+\bar{P}) = G(x) + \bar{P}$$

for all $x \in A$. Hence $[\tilde{G}(y + \bar{P}), x + \bar{P}]\tilde{D}(x + \bar{P})$ is contained in the radical of A/\bar{P} . By Theorem 2.2 $\tilde{G}\tilde{D}(A/\bar{P})$ is contained in the

radical of A/\bar{P} . Thus $\widetilde{D}(A/\bar{P}) \subseteq J/\bar{P}$ or $\widetilde{G}(A/\bar{P}) \subseteq J/\bar{P}$. Therefore $GD(A) \subseteq J$. This completes the proof.

The below result is an immediate consequence of Theorem 2.3.

COROLLARY 2.4. Let D and G be derivations on a semisimple Banach algebra A such that [G(y), x]D(x) = 0 for all $x, y \in A$. Then we have GD = 0.

REFERENCES

- [1] J. Cusack, Automatic continuity and topologically simple radical Banach algebras, J. London Math. Soc.(2) 16 (1977), 493-500.
- [2] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplanski, Amer. J. Math. 90 (1968), 1067-1073.
- [3] M. Mathieu, Where to find the image of a derivation, Banach Center Publ. 30 (1994), 237-249.
- [4] A. M. Sinclair, Continuous derivations on Banach algebras, Proc. Amer. Math. Soc. 20 (1969), 166-170.
- [5] ______, Automatic continuity of linear operators, London Math. Soc. Lecture Note Ser. 21 (1976).
- [6] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264.
- [7] M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. 128 (1988), 435-460.
- [8] J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990), 47-52.
- [9] _____, A result concerning derivations in noncommutative Banach algebras, Glas. Mat. 26 (1991), 83-88.

DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY TAEJON 305-764, KOREA

E-mail: ischang@math.chungnam.ac.kr