ON SPECIAL DEFORMATIONS OF PLANE QUARTICS WITH AN ORDINARY CUSP OF MULTIPLICITY THREE

Pyung-Lyun Kang* and Dong-Soo Lee**

Abstract

Let $\left\{C_{t}\right\}$ be a pencil of smooth quartics for $t \neq 0$ degenerating to a plane quartic C_{0} with an ordinary cusp of multiplicity 3 . We compute the stable limit as $t \rightarrow 0$ of $\left\{C_{t}\right\}$ when the total surface of this family has a triple point at the singular point of C_{0}.

1. Introduction

Let $\left\{C_{t}\right\}$ be a pencil of curves where C_{t} are smooth curves of genus g for t in a punctured disk $\Delta^{*}=\Delta-0 \subset \mathbb{C}$ and C_{0} is a singular curve. Then there exists a morphism $\phi^{*}: \Delta^{*} \rightarrow \mathcal{M}_{g}$ which extends uniquely to $\phi: \Delta \rightarrow \overline{\mathcal{M}}_{3} . \phi(0)$ is called a stable limit of $\left\{C_{t}\right\}$ as $t \rightarrow 0$. It can be computed from (semi-)stable reduction theorem. Refer to the book [2] for stable reduction theorem. In this paper we study stable limits of $\left\{C_{t}\right\}$ for the pencils $\left\{C_{t}\right\}$ of plane quartics with C_{t} for $t \neq 0$ smooth quartics and C_{0} a quartic with an ordinary cusp of multiplicity 3 . In [3], we have showed that the stable limit as $t \rightarrow 0$ is smooth if the total surface of a family $\left\{C_{t}\right\}$ is smooth or has a double point at the singular point of the central fiber $C_{0}=C$. From the direct computation, we show in section 2 that the stable limits of

[^0]$\left\{C_{t}\right\}$ are same as the stable limits of reducible plane quartic $L+F$ where L is a line and F is a cubic with $I_{P^{\prime}}(L, F)=3$ for some point P^{\prime} with the total surface smooth at P^{\prime} if the total surface $\left\{C_{t}\right\}$ has a triple point which is the only remaining case in [3].

2. The stable limits of the families that we study

We first introduce some etale versal deformation space. For further information, see [1]. Let $C=\{f(x, y)=0\}$ be a reduced curve with an isolated singular point $P=(0,0)$. Then there exists an etale versal deformation $\zeta: \mathcal{D} \rightarrow D$ defined by $D=\operatorname{Spec}(\mathbb{C}[x, y] / J)$ where J is the jacobian ideal of C generated by $\left(f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$ and $\mathcal{D}=$ $\left\{f+\sum_{1}^{N} t_{k} h_{k}=0\right\} \subset \operatorname{Spec}(\mathbb{C}[x, y]) \times \operatorname{Spec}\left(\mathbb{C}\left[a_{1}, a_{2}, \cdots, a_{N}\right]\right)$ where $h_{1}, h_{2}, \cdots, h_{N}$ are basis of $\mathbb{C}[x, y] / J$. Then $\zeta: \mathcal{D} \rightarrow D$ becomes an etale versal deformation: versality means that any other deformation $\xi: \mathcal{X} \rightarrow X$ of C is analytically isomorphic to the pull back of $\zeta: \mathcal{D} \rightarrow$ D. In this paper we call D the versal deformation space of C.

Let C be given by $y^{3}=x^{4}$ and $D=\operatorname{Spec} \mathbb{C}[x, y] /\left(y^{2}, x^{3}\right)$ the versal deformation space of C. Then $\operatorname{dim}_{\mathbb{C}}(D)=6$. Choose

$$
\left\{1, x, y, x^{2}, x y, x^{2} y\right\}
$$

as a basis of D and take (a, b, c, d, e, f) as coordinates of D. Then by the versality of D, every family $\left\{C_{t}\right\}$ degenerating to C as $t \rightarrow 0$ is defined by the equation

$$
F(x, y, t)=y^{3}-x^{4}+\sum_{k \geq 1} t^{k}\left(a_{k}+b_{k} x+c_{k} y+d_{k} x^{2}+e_{k} x y+f_{k} x^{2} y\right)
$$

which corresponds to a curve in D

$$
\mathbf{r}(t)=\sum_{k=1} \mathbf{a}_{k} t^{k}
$$

through the origin and which is smooth at the origin where $\mathbf{a}_{k}=$ $\left(a_{k}, b_{k}, c_{k}, d_{k}, e_{k}, f_{k}\right) \in D$. Note that each fiber C_{t} can be projectified as a plane quartic in \mathbb{P}^{2} by adding one smooth hyperflex point (0:1: 0). So it is a family of plane quartics degenerating to a plane quartic C with an ordinary cusp P of multiplicity 3 . Since we concern the limits as $t \rightarrow 0$, we work over a small disk $\Delta \ni 0$.

Let \mathcal{C} be a surface in $\mathbb{A}^{2} \times \Delta$ (or in $\mathbb{P}^{2} \times \Delta$ if one prefer) given by $F(x, y, t)$ with a projection $p: \mathcal{C} \rightarrow \Delta$ to the second component Δ. We always assume in this paper that $C_{t}=p^{-1}(t)$ is smooth for $t \neq 0$. So, P is the only singular point of \mathcal{C}. In [3] we have computed the corresponding stable limit when the total surface is smooth or has a double point at P.

In this section we assume that \mathcal{C} has a triple point at the singular point P of the central fiber C. Then \mathcal{C} is defined by

$$
\begin{align*}
F(x, y, t)= & y^{3}-x^{4}+t\left(d_{1} x^{2}+e_{1} x y+f_{1} x^{2} y\right) \\
& +t^{2}\left(b_{2} x+c_{2} y+d_{2} x^{2}+e_{2} x y+f_{2} x^{2} y\right) \\
& +t^{3}\left(a_{3}+b_{3} x+c_{3} y+d_{3} x^{2}+e_{3} x y+f_{3} x^{2} y\right) \tag{1}\\
& +\left[t^{4}\right]
\end{align*}
$$

where [t^{4}] means that all terms are the multiple of t^{4}. Since \mathcal{C} is singular at P we first desingularize \mathcal{C}.

Let $\tilde{\pi}: \widetilde{\mathbb{A}}^{3} \rightarrow \mathbb{A}^{3}$ be the blow-up of \mathbb{A}^{3} at the origin and $\widetilde{\mathcal{C}}$ the proper transform of \mathcal{C} under $\tilde{\pi}$. Put $\pi=\tilde{\pi} \mid \widetilde{\mathcal{C}}: \tilde{\mathcal{C}} \rightarrow \mathcal{C}$. Then we have a new family $p_{1}=p \circ \pi: \widetilde{\mathcal{C}} \rightarrow \Delta$ all fibers of which except $t=0$ are same as $C_{t} . \widetilde{\mathbb{A}}^{3}$ is defined by $x y_{1}=x_{1} y, x t_{1}=x_{1} t, y t_{1}=t y_{1}$ in $\mathbb{A}^{3}{ }_{(x, y, t)} \times \mathbb{P}^{2}{ }_{\left(x_{1}: y_{1}: t_{1}\right)}$. Then $\tilde{\mathcal{C}}$ on each affine neighborhood U, V and W of $x_{1} \neq 0, y_{1} \neq 0$ and $t_{1} \neq 0$ is given by the following equation
respectively:

$$
\text { on } \begin{align*}
U_{1}: y_{1}^{3}-x & +t_{1}\left(d_{1}+e_{1} y_{1}+f_{1} x y_{1}\right) \\
& +t_{1}^{2}\left(b_{2}+c_{2} y_{1}+d_{2} x+e_{2} x y_{1}+f_{2} x^{2} y_{1}\right) \\
& +t_{1}^{3}\left(a_{3}+b_{3} x+c_{3} x y_{1}+d_{3} x^{2}+e_{3} x^{2} y_{1}+f_{3} x^{3} y_{1}\right) \tag{2}\\
& +\left[x t_{1}^{4}\right]
\end{align*}
$$

$$
\text { on } \begin{aligned}
V_{1}: & 1-x_{1}^{4} y+t_{1}\left(d_{1} x_{1}^{2}+e_{1} x_{1}+f_{1} x_{1}^{2} y\right) \\
& +t_{1}^{2}\left(b_{2} x_{1}+c_{2}+d_{2} x_{1}^{2} y+e_{2} x_{1} y+f_{2} x_{1}^{2} y^{2}\right) \\
& +t_{1}^{3}\left(a_{3}+b_{3} x_{1} y+c_{3} y+d_{3} x_{1}^{2} y^{2}+e_{3} x_{1} y^{2}+f_{3} x_{1}^{2} y^{3}\right) \\
& +\left[y t_{1}^{4}\right]
\end{aligned}
$$

$$
\text { on } W_{1}: y_{1}^{3}-x_{1}^{4} t+\left(d_{1} x_{1}^{2}+e_{1} x_{1} y_{1}+f_{1} x_{1}^{2} y_{1} t\right)
$$

$$
+\left(b_{2} x_{1}+c_{2} y_{1}+d_{2} x_{1}^{2} t+e_{2} x_{1} y_{1} t+f_{2} x_{1}^{2} y_{1} t^{2}\right)
$$

$$
+\left(a_{3}+b_{3} x_{1} t+c_{3} y_{1} t+d_{3} x_{1}^{2} t^{2}+e_{3} x_{1} y_{1} t^{2}+f_{3} x_{1}^{2} y_{1} t^{3}\right)
$$

$$
+[t]
$$

LEMMA 1. Under the assumption above, the new central fiber $p_{1}^{*}(0)=\widetilde{C}_{0}$ is a union of a rational curve \bar{C} and a plane cubic F which meet at one point P_{1} with $I_{P_{1}}(\vec{C}, F)=3$. Moreover the total surface $\widetilde{\mathcal{C}}$ is smooth at P_{1}. Here \bar{C} is the normalization of C and F the exceptional divisor of $\pi: \widetilde{\mathcal{C}} \rightarrow \mathcal{C}$.

Proof. On U,

$$
\begin{aligned}
p_{1}^{*}(0) & =(t)=\left(t_{1}\right)+(x) \\
& =\left(t_{1}, y_{1}^{3}-x\right) \\
& +\left(x, y_{1}^{3}+d_{1} t_{1}+e_{1} y_{1} t_{1}+b_{2} t_{1}^{2}+c_{2} y_{1} t_{1}^{2}+a_{3} t_{1}^{3}\right) \\
& =\bar{C}+F
\end{aligned}
$$

Since $\left\{y_{1}, t_{1}\right\}$ is a local coordinates of \mathcal{C} at P_{1} the intersection point $I_{P_{1}}(\bar{C}, F)$ of \bar{C} and F is equal to $I_{P}\left(t_{1}, y_{1}^{3}+d_{1} t_{1}+e_{1} y_{1} t_{1}+b_{2} t_{1}^{2}+\right.$ $\left.c_{2} y_{1} t_{1}^{2}+a_{3} t_{1}^{3}\right)=3$. That P_{1} is a smooth point of $\widetilde{\mathcal{C}}$ follows from equation (2).

Lemma 2. \widetilde{C}_{0} is isomorphic to the reducible plane quartics $L+F$ with $I_{P_{1}}(L, F)=3$ at some point P_{1} where L is a line and F is a (possibly reducible and non-reduced) plane cubic.

Proof. By Bezout's theorem, the total intersection number of a line and a cubic in \mathbb{P}^{2} is 3 . Now it follows from Lemma 1 and from that F is a plane cubic.

The plane quartics $L+F$ with $I_{P_{1}}(L, F)=3$ at some point P_{1} where L is a line and F is a (possibly reducible and non-reduced) plane cubic has been studied in [4] when the family $\left\{C_{t}\right\}$ degenerating to $L+F$ is chosen generically, i.e., the total surface at the non-nodal singular point of $L+F$ is smooth, which is our case by lemma 1 if F is reduced except that F is an irreducible cubic with a cusp not at P_{1}. Note that all cases mentioned in the proof of Lemma 2 really happens. We are now ready to describe the stable limits of $\left\{C_{t}\right\}$ or $\left\{\widetilde{C}_{t}\right\}$ as $t \rightarrow 0$ when F is reduced.

Theorem 1. Suppose that F is reduced.
(a) If F is smooth at P_{1}, then the stable limit of $\left\{C_{t}\right\}$ as $t \rightarrow 0$ is either a genus two curve plus an elliptic curve which meet at one point or a genus two curve plus a rational curve with a node.
(b) If F has a node at P_{1}, then the stable limit of $\left\{C_{t}\right\}$ as $t \rightarrow 0$ is a genus 2 curve with one node.
(c) If F has a cusp at P_{1}, then the stable limit of $\left\{C_{t}\right\}$ as $t \rightarrow 0$ is a smooth curve of genus 3 .
(d) If F has a triple point, then the stable limit of $\left\{C_{t}\right\}$ as $t \rightarrow 0$ becomes a smooth genus 3 curve.

Note that all cases of Theorem 1 exist. In fact, we get (a) if $d_{1} \neq 0$, (b) if $d_{1}=0, e_{1} \neq 0$, (c) if $d_{1}=e_{1}=0$, and (d) if $d_{1}=e_{1}=b_{2}=0$ in the equation (1).

Proof. Remember that $I_{P_{1}}(\bar{C}, F)=3$ and $\tilde{\mathcal{C}}$ is smooth at P_{1}. If F is smooth at P_{1}, then it is isomorphic to either C5f, C6e or C7a in [4] according as F is irreducible, has a node, or has a cusp. So the result follows from theorem 3.2 in [4] except the last case. For the last case, all possible stable limit near cusp has been studied in [2]: the cusp part is replaced by an elliptic curve or a rational curve with one node. So the semi-stable limit of $\left\{C_{t}\right\}$ is a union of genus 2 curve and an elliptic curve or a rational curve with one node connected by the normalization of F. Since F is rational meeting other components at two points, it is contracted to give a stable curve of genus 3 which is a union of genus 2 curve and an elliptic curve or a rational curve with an node. If F has a node at P_{1}, it is isomorphic to either $\mathrm{C} 6 \mathrm{f}, \mathrm{C} 6 \mathrm{j}$ in [4]. If F has a cusp at P_{1}, it is isomorphic to C7b in [4]. If F has a triple point at P_{1}, it is isomorphic to C8b in [4]. So all follow from Theorem 3.2 in [4] since $\tilde{\mathcal{C}}$ is smooth at only one non-nodal point P_{1} of \widetilde{C}_{0}.

If F is non-reduced, F is given by $y_{1}^{3}+c_{2} y_{1} t_{1}^{3}+a_{3} t_{1}^{3}=\left(y_{1}-\gamma\right)^{2}\left(y_{1}+\right.$ $2 \gamma)=0$ for some γ with its discriminant $27 a_{3}^{2}+4 c_{2}^{3}=0$. Then $\widetilde{\mathcal{C}}$ has at best 4 double points of type A_{1} if $\gamma \neq 0$ or type A_{2} if $\gamma=0$ which is the case (6) or (7) of theorem 4.2 in [4] when the multiple line of F and some quartic $g_{1}=0$ meet transversely as we write the equation (3) of $\tilde{\mathcal{C}}$

$$
\left(y_{1}-\gamma\right)^{2}\left(y_{1}+2 \gamma\right)+\sum_{k \geq 1} t^{k} g_{k}\left(x_{1}, y_{1}\right)
$$

Remark. For complete computation, all possible singular types of $\widetilde{\mathcal{C}}$ must be studied. They depend on the intersection types of the multiple line of F and the quartic $g_{1}=0$.

3. Families arising from the lines through the origin in the deformation space of $y^{3}=x^{4}$

We now introduce some families of plane quartics degenerating to $y^{3}=x^{4}$ given by a line in D through the origin. It together with remark in section 2 illustrates how complicate is the rational map from D to $\overline{\mathcal{M}}_{3}$. Now our family $\mathcal{C}=\left\{C_{t}\right\}$ is given by the equation $F(x, y, t)=y^{3}-x^{4}+t\left(a_{1}+b_{1} x+c_{1} y+d_{1} x^{2}+e_{1} x y+f_{1} x^{2} y\right)$. For C_{t} for $t \neq 0$ to be smooth, either a_{1}, b_{1}, or c_{1} is not zero. So the stable limit of $\left\{C_{t}\right\}$ in this case is a smooth curve of genus 3 . Now assume that $\left\{C_{t}\right\}$ is given by $F(x, y, t)=y^{3}-x^{4}+t\left(d_{1} x^{2}+e_{1} x y+f_{1} x^{2} y\right)$. Then C_{t} for $t \neq 0$ has a node if $e_{1} \neq 0$, has a cusp if $d_{1} \neq 0, e_{1}=0$, or has a triple point if $d_{1}=e_{1}=0$ with the total surface singular along $x=y=0$ in all cases. It is the family of plane quartics with one node (or an ordinary cusp, or an ordinary triple point respectively) degenerating to a curve $y^{3}=x^{4}$. To normalize \mathcal{C}, we blow up $\tilde{\pi}: \widetilde{\mathbb{A}^{3}} \rightarrow$ $\mathbb{A}_{(x, y, t)}^{3}$ along the line $x=y=0$. Let $\tilde{\mathcal{C}}$ be the proper transform under $\tilde{\pi}, \pi=\tilde{\pi} \mid \widetilde{\mathcal{C}}: \widetilde{\mathcal{C}} \rightarrow \mathcal{C}$ and $p_{1}: \widetilde{\mathcal{C}} \rightarrow \Delta$ be $p \circ \pi$. In $\widetilde{\mathcal{C}}$, we have normalized all singular points of C_{t} at the same time.

If C_{t} for $t \neq 0$ has a node, write \mathcal{C} as $y^{3}-x^{4}+t\left\{x\left(d_{1} x+e_{1} y\right)+\right.$ $\left.f_{1} x^{2} y\right\}$. Then $\tilde{\mathcal{C}}$ is given by $y_{1}^{3} x-x^{2}+t\left\{\left(d_{1}+e_{1} y_{1}\right)+f_{1} x y_{1}\right\}$ in the affine neighborhood $x_{1} \neq 0$ of $\widetilde{\mathbb{A}^{3}}$ which is given by $x y_{1}=x_{1} y$ in $\mathbb{A}^{3} \times \mathbb{P}_{\left[x_{1}: y_{1}\right]}^{1}$. So if $e_{1} \neq 0$, we have a family of genus 2 curves degenerating to a reducible curve \widetilde{C}_{0} consisting two rational components E and \bar{C} which meet at some point P_{1} with $I_{P_{1}}(E, \bar{C})=3$. Here E is the exceptional divisor of $\pi: \widetilde{\mathcal{C}} \rightarrow \mathcal{C}$ and \bar{C} the normalization of C. Note there exist two disjoint sections $s_{1}: x_{1}=0$ and $s_{2}: d_{1} x_{1}+e_{1} y_{1}=0$ of $p_{1}: \widetilde{\mathcal{C}} \rightarrow \Delta$
which is the pull back of singular locus of \mathcal{C}. So, these two sections meet E at two distinct points away from P_{1}. Now we take the usual stable reduction process while keeping these two sections. Then we get a new family $p^{\prime}: \mathcal{C}^{\prime}=\left\{C_{t}^{\prime}\right\} \rightarrow \Delta$ with C_{t}^{\prime} is isomorphic to $\widetilde{C_{t}}$ for $t \neq 0$ and C_{0}^{\prime} isomorphic to a reducible curve consisting of genus 2 curve meeting E at one point. Here two sections meet C_{0}^{\prime} at two points of E away from the intersection point. To get a family of stable curves of genus 3 , we identify two sections. Therefore, the stable limit of $\left\{C_{t}\right\}$ is a genus 2 curve plus a rational curve with one node.

If C_{t} for $t \neq 0$ has a cusp, we may assume that \mathcal{C} is given by $y^{3}-x^{4}+t\left(x^{2}+f_{1} x^{2} y\right)$ and $\widetilde{\mathcal{C}}$ by $y_{1}^{3} x-x^{2}+t\left(1+f_{1} x y_{1}\right)$ with one section $s: x_{1}=0$ which is the pull back of singular locus of \mathcal{C}. So it is same as the case that C_{t} has a node except that we have one section. So, after the usual stable reduction process, we have a family of smooth genus two curves with one section which is obtained as the simultaneous normalization of cusps. So it is equivalent to finding a stable limit of genus 2 curve with one cusp which is cither a genus 2 curve plus an elliptic curve or genus 2 curve plus a rational curve with one node.

If C_{t} for $t \neq 0$ has a triple point, then \mathcal{C} is given by $y^{3}-x^{4}+t x^{2} y$ and $\widetilde{\mathcal{C}}$ by $y_{1}^{3}-x+t y_{1}$. Now $\widetilde{\mathcal{C}}$ is a family of rational curves with three sections which meet at a point P_{1} over $t=0$. Note that three sections and the central fiber of $\tilde{\mathcal{C}}$ have disjoint tangent lines. To separate these three sections we blow up $\widetilde{\mathcal{C}}$ at P_{1}. Then along the exceptional divisor, three sections and \bar{C} are separated. After contracting \bar{C}, we get a family of rational curves with three disjoint sections. Now we identify all three sections to get a family of smooth rational curves with an ordinary triple point. So it is same as to find all possible stable limits of families of plane quartics degenerating to a quartic
with an ordinary triple point.

References

1. S. Diaz and J. Harris, Ideals associated to deformations of singular plane curves, Trans. Amer. Math. Soc. 308 (1988), 433-468.
2. J. Harris and I. Morrison, Moduli of curves, Springer, 1998.
3. P. L. Kang, A plane quartics with an ordinary cusp of multiplicity $3, \mathbf{J}$. Chungcheong Math. Soc. 9 (1996), 137-146.
4._, On singular plane quartics as limits of smooth curves of genus three, submitted.

Pyung-Lyun Kang
Department of Mathematics
Chungnam National University
TaEjon, 305-764, KOREA
E-mail: plkangGmath. chungnam.ac.kr

Dong-Soo Lee
Department of Mathematics
Chungnam National University
TaEjon, 305-764, Korea
E-mail: dslee@math.chungnam.ac.kr

[^0]: *Supported in part by Chungnam National University in 1998
 **Supported in part by Korea Rcsearch Foundation, Project No. 1998-015D00010

 Received by the editors on June 29, 1999.
 1991 Mathematics Subject Classifications: 14H10.
 Key words and phrases: family of curves, (semi-)stable reduction theorem, stable limits.

