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ON SPECIAL DEFORMATIONS OF
PLANE QUARTICS WITH AN ORDINARY
CUSP OF MULTIPLICITY THREE

PyunG-LyuN KANG* AND DONG-S00 LEE**

ABSTRACT. Let {C;} be a pencil of smooth quartics for ¢t # 0 degen-
erating to a plane quartic Cy with an ordinary cusp of multiplicity 3.
We compute the stable limit as t — 0 of {C;} when the total surface
of this family has a triple point at the singular point of Cj.

-~ 1. Introduction

Let {Cy} be a pencil of curves where C; are smooth curves of genus
g for t in a punctured disk A* = A -0 C C and () is a singular
curve. Then there exists a morphism ¢* : A* — M, which extends
uniquely to ¢ : A — Mj. ¢(0) is called a stable limit of {C,} as
t = 0. It can be computed from (semi-)stable reduction theorem.
Refer to the book [2] for stable reduction theorem. In this paper we
study stable limits of {C}} for the pencils {C;} of plane quartics with
C; for t # 0 smooth quartics and Cy a quartic with an ordinary cusp
of multiplicity 3. In [3], we have showed that the stable limit as ¢t — 0
is smooth if the total surface of a family {C;} is smooth or has a
double point at the singular point of the central fiber Cy = C. From
the direct computation, we show in section 2 that the stable limits of
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{C¢} are same as the stable limits of reducible plane quartic L + F
where L is a line and F is a cubic with Ip:(L, F') = 3 for some point
P’ with the total surface smooth at P’ if the total surface {C;} has a

triple point which is the only remaining case in [3].

2. The stable limits of the families that we study

We first introduce some etale versal deformation space. For further
information, see [1]. Let C = {f(z,y) = 0} be a reduced curve
with an isolated singular point P = (0,0). Then there exists an
etale versal deformation ¢ : D — D defined by D = Spec(Clx,y]/J)
where J is the jacobian ideal of C' generated by (f, %5, g—i) and D =
{f+ zzlv trhy = 0} C Spec(Clz, y]) x Spec(Cla1, a2, - ,an]) where
hi,ha, -+, hy are basis of Clz,y]/J. Then ¢ : D — D becomes an
etale versal deformation : versality means that any other deformation
£ : X = X of C is analytically isomorphic to the pull back of  : D —
D. In this paper we call D the versal deformation space of C.

Let C be given by y3 = z* and D = SpecC|z, y]/(y?, 2°) the versal
deformation space of C. Then dimg(D) = 6. Choose

{1,z,y,2% zy, 2%y}

as a basis of D and take (a,b,¢,d, ¢, f) as coordinates of D. Then by
the versality of D, every family {C;} degenerating to C as ¢t — 0 is
defined by the equation

Flz,y,t) =9 —z* + Z t*(ag + bz + cxy + diz? + exzy + fray)
k>1

which corresponds to a curve in D

r(t) = Z axth
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through the origin and which is smooth at the origin where a, =
(ax, by, ¢k, dk, ex, fx) € D. Note that each fiber C; can be projectified
as a plane quartic in P? by adding one smooth hyperflex point (0: 1 :
0). So it is a family of plane quartics degenerating to a plane quartic
C with an ordinary cusp P of multiplicity 3. Since we concern the

limits as t — 0, we work over a small disk A 3 0.

Let C be a surface in A2 x A (or in P? x A if one prefer) given by
F(z,y,t) with a projection p : ¢ — A to the second component A.
We always assume in this paper that C; = p~!(¢) is smooth for ¢ # 0.
So, P is the only singular point of C. In [3] we have computed the
corresponding stable limit when the total surface is smooth or has a

double point at P.

In this section we assume that C has a triple point at the singular
point P of the central fiber C. Then C is defined by

F(z,y,t) = y* — 2* + t(d12” + erzy + f127y)
+ t2(byx + oy + dox® + eaxy + foz’y)
+ (a3 + baz + cay + daz® + eaxy + fax’y)
+ [t4]

where [t*] means that all terms are the multiple of t*. Since C is
singular at P we first desingularize C.

Let 7 : A% — A3 be the blow-up of A3 at the origin and C the
proper transform of C under 7. Put n = fr|5: C - C. Then we have
a new family p; = pom : C — A all fibers of which except t = 0
are same as C;. A3 is defined by zy1 = z1y,xt1 = z1t,yt1 = {y in
A%yt X P2 gy, Then C on each affine neighborhood U, V and
W of z1 # 0, y1 # 0 and ¢; # 0 is given by the following equation
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respectively:

on Uy : 4y — z +t1(d1 + exyn + frzyr)
&) +t2(by + coy1 + dox + e23y1 + f227y1)

+ t3(as + b3z + carys + daz”® + esx’yy + f37°y1)
+ [=t1];

onVy;:1-— :r:'iy + tl(dle + e1xq + fl.rfy)
+ 12 (bazy + C2 + daziy + €221y + foziy?)
+ t3(as + baz1y + c3y + daziy® + eaz1y® + fax3y°)
+ [yt1);

on Wy : yf — 2t + (d122 + exrryn + frziunt)
+ (bo1 + e2y1 + dazit + eaziyit + foxlyit?)

+ (a3 + bzt + eyt + dg:z::ft2 + 63x1y1t2 + f3x§y1t3)
+ [t]

LEMMA 1. Under the assumption above, the new central fiber
p1(0) = C, is a union of a rational curve C' and a plane cubic F
which meet at one point P, with Ip (C,F) = 3. Moreover the total

surface C is smooth at P,. Here C is the normalization of C and F
the exceptional divisor of 7 : C — C.

Proof. On U,

pi(0) = (t) = (t2) + (2)
= (tla y? — .’I,')
+ (z, ¥5 + dity + eqyits + bot? + coynt? + asty)

=C+F
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Since {y1,%1} is a local coordinates of C at P; the intersection point
Ip(C,F) of C and F is equal to Ip(t1,45 + dit1 + eayrty + bat? +
cayt? + astd) = 3. That P; is a smooth point of C follows from
equation {2}. 0

LEMMA 2. 50 is isomorphic to the reducible plane quartics L + F
with Ip (L, F) = 3 at some point P, where L is a line and F is a
(possibly reducible and non-reduced) plane cubic.

Proof. By Bezout’s theorem, the total intersection number of a line
and a cubic in P? is 3. Now it follows from Lemma 1 and from that

F is a plane cubic. _ O

The plane quartics L+F with Ip, (L, F) = 3 at some point P; where
Lisalineand Fisa (possibly reducible and non-reduced) plane cubic
has been studied in [4] when the family {C;} degenerating to L + F
is chosen generically, i.e., the total surface at the non-nodal singular
point of L+ F' is smooth, which is our case by lemma 1 if F' is reduced
except that F' is an irreducible cubic with a cusp not at P;. Note that
all cases mentioned in the proof of Lemma 2 really happens. We are
now ready to describe the stable limits of {C;} or {C;} as t — 0 when
F is reduced.

THEOREM 1. Suppose that F' is reduced.

(a) If F' is smooth at Py, then the stable limit of {C;} ast — 0
is either a genus two curve plus an elliptic curve which meet
at one point or a genus two curve plus a rational curve with
a node.

{(b) If F has a node at Py, then the stable limit of {C;} ast — 0
is a genus 2 curve with one node.

(c) If F has a cusp at Py, then the stable limit of {C;} ast — 0
is a smooth curve of genus 3.
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(d) If F has a triple point, then the stable limit of {C;} ast — 0

" becomes a smooth genus 3 curve.

Note that all cases of Theorem 1 exist. In fact, we get (a) if dy # 0,
(b) lfdl = 0,81 # 0, (C) lfd]_ = €] = 0, and (d) lfdl =€ = bg =0 in
the equation (1).

Proof. Remember that Ip, (C,F) = 3 and C is smooth at Py. If F
is smooth at P;, then it is isomorphic to either C5f, Cée or C7a in
[4] according as F' is irreducible, has a node, or has a cusp. So the
result follows from theorem 3.2 in [4] except the last case. For the last
case, all possible stable limit near cusp has been studied in [2]: the
cusp part is replaced by an elliptic curve or a rational curve with one
node. So the semi-stable limit of {C}} is a union of genus 2 curve and
an elliptic curve or a rational curve with one node connected by the
normalization of F'. Since F is rational meeting other components at
two points, it is contracted to give a stable curve of genus 3 which is
a union of genus 2 curve and an elliptic curve or a rational curve with
an node. If ¥ has a node at Py, it is isomorphic to either C6f, C6j in
[4]. If F has a cusp at Py, it is isomorphic to C7b in [4]. If F has a
triple point at Py, it is isomorphic to C8b in [4]. So all follow from
Theorem 3.2 in [4] since C is smooth at only one non-nodal point P
of 50 . ' 0O

If F is non-reduced, F is given by y3 +cay1t3 + a3t = (y1—7)2(n+
2y) = 0 for some v with its discriminant 27a3 + 4¢3 = 0. Then C has
at best 4 double points of type A; if v # 0 or type Aj if ¥ = 0 which
is the case (6) or (7) of theorem 4.2 in [4] when the multiple line of F
and some quartic g; = 0 meet transversely as we write the equation
(3)of C

(51 =) (0 + 27) + Ztkgk(xla y1)-
k>1
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REMARK. For complete computation, all possible singular types
of C must be studied. They depend on the intersection types of the
multiple line of F' and the quartic g; = 0.

3. Families arising from the lines through the origin in the

deformation space of y° = z*

We now introduce some families of plane quartics degenerating to
y3 = z* given by a line in D through the origin. It together with
remark in section 2 illustrates how complicate is the rational map
from D to M. Now our family C = {C¢} is given by the equation
F(z,y,t) = y* —z* + t(a; + iz + 1y + dr2® + eyvy + fLz%y). For Cy
for ¢ # 0 to be smooth, either a;, b1, or ¢; is not zero. So the stable
- limit of {C}} in this case is a smooth curve of genus 3. Now assume
that {Cy} is given by F(z,y,t) = y® — 2* + t(d12? + eyzy + fr2?y).
Then C} for ¢t # 0 has a node if e; # 0, has a cusp if dy # 0, ey =0
, or has a triple point if d; = e; = 0 with the total surface singular
along z = y = 0 in all cases. It is the family of plane quartics with one
node (or an ordinary cusp, or an ordinary triple point respectively)
degenerating to a curve y* = z%. To normalize C , we blow up 7 : A3
Al y.1) 2long ! - .
7,7 =7|C:C—Candp;:C — A bepon. InC, we have normalized

) along the line z = y = 0. Let C be the proper transform under

all singular points of C; at the same time.

If Cy for ¢ # 0 has a node, write C as y* — 2 + t{z(dyz + e19) +
F1z%y}. Then C is given by y3z—z2+t{(d1+e1y1)+ fizy1} in the affine
neighborhood z1 # 0 of A3 which is given by zy; = 21y in A3x Ply sl
So if e; # 0, we have a family of genus 2 curves degenerating to a
reducible curve C, consisting two rational components E and C which
meet at some point Py with Ip, (E,C) = 3. Here E is the exceptional
divisor of w : C — C and C the normalization of C. Note there exist

two disjoint sections s; : 3 = 0 and s : diz1+e 1y = 0ofpy : C—o A
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which is the pull back of singular locus of C. So, these two scctions
meet E at two distinct points away from P;. Now we take the usual
stable reduction process while keeping these two sections. Then we
get a new family p’ : ¢’ = {C!} = A with C/ is isomorphic to C,
for t # 0 and C} isomorphic to a reducible curve consisting of genus
2 curve meeting E at one point. Here two sections meet Cf at two
points of £ away from the intersection point. To get a family of stable
curves of genus 3, we identify two sections. Therefore, the stable limit

of {C;} is a genus 2 curve plus a rational curve with one node.

If C; for t # 0 has a cusp, we may assume that C is given by
y3 — 2t + t{z? + f1z%y) and C by 3z — 22 + t{1 + frzy:) with one
section s : z; = 0 which is the pull back of singular locus of C. So
it is same as the case that C; has a node except that we have one
section. So, after the usual stable reduction process, we have a family
of smooth genus two curves with one section which is obtained as the
simultaneous normalization of cusps. So it is equivalent to finding a
stable limit of genus 2 curve with one cusp which is either a genus
2 curve plus an elliptic curve or genus 2 curve plus a rational curve

with one node.

If C; for t # 0 has a triple point, then C is given by y® — z* + tz2%y
and C by 43 — = +ty;. Now Cis a family of rational curves with three
sections which meet at a point P; over ¢ = 0. Note that three sections
and the central fiber of C have disjoint tangent lines. To separate
these three sections we blow up C at P;. Then along the exceptional
divisor, three sections and C are separated. After contracting C, we
get a family of rational curves with three disjoint sections. Now we
identify all three sections to get a family of smooth rational curves
with an ordinary triple point. So it is same as to find all possible
stable limits of families of plane quartics degenerating to a quartic
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with an ordinary triple point.
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