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ON THE CONTINUITY AND GAUSSIAN CHAOS
OF SELF-SIMILAR PROCESSES

Joo-Mok Kim

ABSTRACT. Let {X(t),t > 0} be a stochastic integral process rep-
resented by stable random measure or multiple Ito-Wiener integrals.
Under some conditions, we prove the continuity and self-similarity of
these stochastic integral processes. As an application, we get Gaussian
chaos which has some shift continuous function.

1. Introduction

We are interested in self-similar process which has continuous sample
paths and want to know the properties of self-similar processes via
stochastic integral representations of the type

X(t) = /R Qu(w)dM, (u),

under some conditions on kernel @);, where M, is a symmetric « sta-
ble random measure ([5],[6]). The useful examples of these types are

fractional Brownian motion and linear fractional stable motion which
are the two major families of self-similar time series to investigate the

intensity of long-range dependence ([7],[8],[9]).
On the other hand, consider the integral processes defined by multi-
ple Ito-Wiener integrals

You(t) :/---/Qt(ul,uz,--- ‘um)dB(u)dB(ug) - - - dB(un), t3> 0,
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where, the right hand side is the m-multiple Ito-Wiener integral with
respect to the standard Brownian motion {B(u),u > 0}. ([3],[4]) prove
a functional iterated logarithm law for a certain class of self-similar
processes and ([2]) furnish us with general information on Gaussian
chaos which were introduced by N. Weiner.

In chapter 2, we give some definitions and get that some Sa.S distri-

bution has the same distribution as the first arrival time of Brownian
motion. In chapter 3, we show that {X(¢),t > 0} is H-self-similar

and has continuous sample paths under some conditions on the kernel
Q:. In chapter 4, we consider the stochastic integral processes repre-
sented by multiple Ito-Wiener integral. We prove the continuity and
self-similarity of this integral process {Y,,(t),t > 0}. Finally, we get
Gaussian chaos which has some shift continuous function.

2. Preliminaries

DEFINITION 2.1. A random variable is said to have an a-stable dis-
tribution if there are parameters 0 < a < 2,0 >0, -1 <g<1land p

real such that its characteristic function has the following form
Elexp i6X]
exp{—0®|0|*(1 — if(sign 0) tan Z2) +iuf} if o #1,
exp{—0]0|(1 + if2(sign 6) In |6]) + iu6} if a=1.
We call o scale parameter, 3 skewness parameter and y shift param-
eter and the parameters are unique. We denote S,(c, 3, 1) an a-stable

random variable. If random variable X is a symmetric a-stable, i.e.,
B = p =0, then we write X ~ SaS(0).

EXAMPLE 2.1. The Levy distribution Sy /5(0, 1, 1) whose density

)" e )
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is concentrated on (i, 00). If X ~ Sy/5(0,1,0), then for z > 0,

pw<o-3(-0({)

where ® denote the cumulative distribution function of N (0,1) distri-

bution.

THEOREM 2.1. Let {B(t),t > 0} be a standard Brownian motion
with a.s. continuous paths. Let T, denote the first time it reaches the
level a > 0. Then T, has the Levy distribution

81/2(02, ]., O)

Proof. From reflection principle of Brownian motion, we know that
P(T, <t)=2P(B(t) > a). Thus

P(T,<t) = 2P(N(0,t) > a)
= 2P(t'2N(0,1) > a)
= 2P(N(0,1) > at™/?)

" a
= 2(1-®(— ).
( ( Vi ) )
By Example 2.1 | T, has Levy distribution. O

DEFINITION 2.2. A stochastic process {X (t),t > 0} is H-self-similar
(H — ss) if for some H > 0,

{X(ct),t >0} £ {cFX(t),t>0} forany c>0,

where, £ means the equality of all finite dimensional distributions.

DEFINITION 2.3. A random variable X with values in set C' of con-
tinuous functions is a Gaussian chaos if for some ¢;;(-) € C (i, =
1,2,--- ),

X =) ci()gigs
i,

where, {g;}i>1 is 1.i.d. N(0,1) random sequence.
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Denote by (€, F, P) with underlying probability space and L°(f2)
the set of all real random variables defined on it. Let (E,E,m) be a

o—finite measure space and let
Ey = {A S E,m(A) < OO}
be the subset of E that contains sets of finite m-measure.

DEFINITION 2.4. An independentently scattered o-additive set func-
tion ’
M, : Ey — L°(Q)
such that for each A € Ey,
 Ma(A) ~ SaS(m(A))

is called an SaS random measure on (E, E) with control measure m.

3. H-ss represented by stable random measure

Consider the processes

X@:L@MMMW

where @) is of the form
Quin(u) — Qi(u) = Qu(u) ae. in u and for any t,h >0,

and

where f is a measurable function.

LEMMA 3.1. If f is a measurable function and if f € L®, then the
process X defined by

X@:L@MMMW £>0

is an SaS process.
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Proof. For each t > 0,

/'tH"éf (%) ‘adu = tH"‘/|f('v)|°‘d'u < oo foreach t
Thus, Lemma follows from [5, chapter 3.4]. ]

THEOREM 3.2. {X(t),t > 0} is an H-ss process with stationary in-

crements and has continuous sample paths when H > 21;

Proof. Note that dM,(cu) = c/dM,(u). Since
Xet) = [ QutwiMa(u)
= [t i1 (%) dMatw)
o [ enss () ama(o)

= X1,

Il

the self-similarity of X (¢) holds. Similarly, dM,(u + h) = dM,(u) and
assumption on @; implies the stationary increments.

It is enough to show that for any —oco < a < b < 00, {X(t),a <t <
b} has continuous sample paths. By the H-self-similarity of the process
and the stationarity of its increments, we have

E|X(t) - X(s)IP = [t - SIH”El/f(U)dMa(U)I”

for any 0 < p < a and hence the metric generated by the process is of
the form

dx(t,s) = co|t — s|7.

Let N(e) be the smallest number of open dx balls of radius € needed

to cover [a, b]. Since

N(e) <ce 7, forany 0<e<co(b—a)¥,
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the assumption H > -g; ensures that the condition of [5, Theorem 12.2.1]
holds. Therefore, {X(t),¢ >} has continuous sample paths. O

Let

) =af(t -0 = (a4 p{0 -0 - ()R,

where, a and b are some constants. Then X (t) is a fractional Brownian
motion (FBM) if & = 2 and a linear fractional stable motion (LFSM)
if o < 2. Let us apply Theorem 3.2 to FBM and LFSM which are two
major self-similar time series to investigate long-range dependence from
modeling view points.

Since

H-L H-L H-1 -1
Qi(u) =a{(t —w); = —(—u)y “}+b{t—uw)_ = —(-u)_ =}
isin L*(R), X (t) is Sa.S process by Lemma 3.1. For the self-similarity,

H-L1

X@ = [ofct-wi - (-0 )
+b{(ct — )" — (—u)F T} M, (u)
= [ ol = w ¥ - ()i
b{(ct — cu)™T — (—eu)TTT 1M, (cu)

Ak / af(t w7 - (-u){7F)

1B

_1 _1
+b{(t — )77 — (—u)T "7 }d M, (u)
= AX(). |
By dMa(u + h) = dM,(u), the stationary increment property holds.

And, Theorem 3.2 implies {X(¢),t > 0} has continuous sample paths
when H > 1.
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4. H-ss represented by Ito-Wiener integrals

Let {Q:(u1,ug, - ,um),t > 0} be a square integrable symmetric
function on R™ and be assumed to be of the form

m u u
Qt(u17u27 e aum) = tH_?f (_tla e 7—?"1_) )

where, f is a bounded continuous function on R™ such that

/ fz(ul,uz,n-,um)dul---dum<oo.
Rm

Consider the processes represented by the multiple Ito-Wiener inte-
grals '

Vo) = [ [ Quwrs+  um)dBlu) - dBlun),

where, the right-hand side is a m-multiple Wiener integral with respect
to standard Brownian motion {B(u),u > 0}.
LEMMA 4.1. For any stochastic process {Z(t),t > 0}, if there exist
constants A > 0 and 0 < H < 1 such that
[B|Z(t+h) — Z(t)"]V* < AR, (>0, 0<h<1),

then the processes {Z(t),t > 0} may be supposed to have continuous
sample paths.

Proof. See [3, Lemma 6.2]. O

THEOREM 4.2. {Y,,(t),t > 0} is self-similar with index HO0<H<
1. '

Proof. For the self-similarity of {Y,(t),¢ > 0}, we know that

Yo (ct)

/ | Quleuz, - )dB(u)dB(us) - dB(un)

/"'/n(Ct)H—m/2f (%,t_;") dB(uy) - - dB(upm).

I
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Let —L — =,- H_"i = ¥,,. Then
c
Yiu(ct) = / / (ct)?~ m/2f ) Blcvy) - - - dB(cvp)
4 . / /ntH m/2f<t %’E) dB(v1) - - - dB(vp)

THEOREM 4.3. {Y,,(t),t > 0} has continuous sample paths under
the following condition : there exists A such that

/ /[Hh)H——f(Hh ' ’11Th)_f(“1""’“m)r

duy - - - duy, < AR

for 0 < h<1.
Proof. 1t suffices to show that
[E[Ym(t +h) = Y () ]/? < ARF
for some A, h (0< h <1).
| E|Y,(t+ h) = Yo (8))?
= E|/ . Quin(ur, Ug, -+ Um) — Qe(ur, Ug, -+, Upm)

dB(u1)dB(us) - - - dB(upm)[?

= hH——- . Um
Ei/ /mt+ f<t+ht+h ’t+h>

TR (T ) dBlun)dB(ua) - dB(un)

Doob-Meyer decomposition Theorem ([1, Theorem 4.10]) implies
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E|Yn(t + h) — V()2

. H._!l . U,
_//m{Hh 2f(t+ht+h ’t+h)

m Uy U U
__tH_Tf (717?27 7Tm)] duldu2...dum

= Jf ) o 54e)

—f (E‘;,"_‘tﬁ, ,yﬂ)]?dulduQ---dum

t
Rl (5 N (T S
t 1+h/t’ 1+ h/t 1+ h/t
—f(v1, v, -+, vm)]* dvrduy - - - dupg,
B\ 2H
< t2HA (_t_> :Ath‘
Therefore,

[BIYon(t +h) = Ym(t)?]2 < AZR".
By Lemma 4.1, {Y;,(t),t > 0} has continuous sample paths. O

Uy U
For each t > 0, let Qy(u1,us) = tH- 1f( ! t2) be a continuous

kernel on [0, 1] x [0, 1] such that

1
f oG

is continuous at each ¢t > 0. Let

i) = [ [ Qo u)iBu)iB
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be a double Ito-Wiener integral such that the stochastic process {Y2(?), ¢

> 0} has a continuous version.

LEMMA 4.4. Let {h;,i > 1} be a family of Haar functions.

(¢) If i = j, then
p —
/o /o hi(u)h;(uz)dB(u1)dB(up) = 27" B (5’75) !

(2) Ifi # j, then

/01 /01 hi(u1)h;(ug)dB (uy)dB (us)

= /0 1 hi(u1)dB(uy) - /0 1 hj(uz)dB(us)

Proof. (i) By definition of Haar function and reflection principle of
Brownian motion, it follows

/01 /01 hi(u1)hj(ug)dB(u;)dB(us)

Y / 4B (u1)dB (u)
‘%—kl

i-y

2k
j—1
5

o o (d) (5] o (52) o (5]
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Here,

ji=1/2

4-2’°/T/u2 dB(u1)dB(us)
g ST

0 0
1

N |
- / T 1B (uy)dB(us)
0

1 1
k+1 | p2
2 [B (2k+1) - 2k+1:|

1
_ k+1 2

Therefore, we get

/01 /01 hi(ur)hy(uz)dB (u1)dB (uz)
- [ (52) -5 ()
o () ()] -

_ Uol hi(u)dB(u)r 1

(ii) By independent increment property of Brownian motion,

/01 /01 hi(u1)hj(uz)dB(ur)dB(uy)

= /01 h,«(ul)dB(ul)" /: h;j(uz)dB (us).
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THEOREM 4.5. Let {Y5(t),t > 0} be stochastic processes which have

continuous version as stated above. Then there exists ﬁxed‘ shift con-
tinuous function F' € C such that

(V2 + F)(t) = > cii(t)gig;
ij>1
where, {c;;(t);,j > 1} is a sequence of C and {gi,1 > 1} is an i.i.d.
sequence of N(0,1) random variables.

Proof. Since Qq(u1,us) is continuous on [0,1] x [0,1], @; has the
following Fourier-Haar expansion, '

U1, U2 E cZ] U2)

1,j=1

where,

cii(t) = /0 1 /O " Qultn, ) () oy (1) .

Then

no = [ /  Qu(ur, w)dB(ur)dB(ws)

= Iélm ciji(t / / i(u1)hj(u2)dB(u1)dB(us).
1,j=1

1
Since / hi(u)dB(u) is a standard normal random variable for each
0

1
i=1,2,---, we can put g; = / hi(v)dB(u). By Lemma 4.4,
0

N
Yat) = lim Y cij(t)(gig; — 6i;)

N—oo
1,7=1

o0

= Z zg gzg] Zczz
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1
We know that / (%, —?—) du is continuous and
0

1
Let F(t) = tH‘l/ f (3;—, ZZ—) du. Therefore, we get F' € C and
0

Yao(t) + F(t) = Z cij(t)gig;-

REFERENCES

1. I. Karatzas, and S.E. Shreve, Brownian motion and stochastic calculus,
Springer-Verlag, 1988.

2. M. Ledoux and M. Talagrand, Probability in Banach space, Isoperimetry and
Processes, Springer-Verlag, 1991.

3. T. Mori and H. Oodaira, The law of the iterated logarithm for self-similar pro-
cesses represented by multiple Wiener integrals, Probab. Th. Rel. Fields, 71,
367-392, 1986.

4. T. Mori and H. Oodaira, The functional iterated logarithm law for stochastic
processes represented by multiple Wiener integrals, Probab. Th. Rel. Fields, 76,
299-310, 1987.

5. G. Samorodnitsky and M. S. Taqqu, Stable non-Gaussian processes: Stochastic
models with Infinite Variance, Chapman and Hall, New York, London, 1994.

6. K. Takashima, Sample path properties of ergodic self-similar processes, Osaka J.
Math. 26, 159-189, 1989.

7. M. S. Taqqu and V. Teverovsky, On Estimating the Intensity of Long- Range
Dependence in Finite and Infinite Variance Time Series, A Practical Guide To
Heavy Tails, Birkhauser, Boston, 1996.

8. M. S. Taqqu and V. Teverovsky, Robustness of Whittle-type Estimators for Time
Series with Long-Range Dependence, To appear in Stochastic Models in 1997.

9. M. S. Taqqu and V. Teverovsky, W. Willinger, Estimators for long-range de-
pendence: an empirical study, Fractals, 3(4), 785-798, 1995.



146 JOO-MOK KIM

DEPARTMENT OF COMPUTATIONAL APPLIED MATHEMATICS
SEMYUNG UNIVERSITY
JECHEON 390-230, KOREA

E-mail: jmkim@venus.semyung.ac.kr



