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ON THE CONTINUITY AND GAUSSIAN CHAOS 
OF SELF-SIMILAR PROCESSES

Joo-Mok Kim

Abstract. Let {X(t),t > 0} be a stochastic integral process rep­resented by stable random measure or multiple Ito-Wiener integrals. Under some conditions, we prove the continuity and self-similarity of these stochastic integral processes. As an application, we get Gaussian chaos which has some shift continuous function.
1. Introduction

We are interested in sei仁similar process which has continuous sample 
paths and want to know the properties of self-similar processes via 
stochastic integral representations of the type

X(t) = [ Qt(u)dMa(u),
Jr

under some conditions on kernel Qt, where Ma is a symmetric a sta­
ble random measure ([5],[6]). The useful examples of these types are 
fractional Brownian motion and linear fractional stable motion which 
are the two major families of self-similar time series to investigate the 
intensity of long-range dependence ([7],[8],[이).

On the other hand, consider the integral processes defined by multi­
ple Ito-Wiener integrals

夕W) = y … y Qt(UU 以2, … , 以mW(Ui)dB(U2)• - • dBqim), t > 0,
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where, the right hand side is the m-multiple Ito-Wiener integral with 
respect to the standard Brownian motion {B(?z), u > 0}. ([3],[4]) prove 
a functional iterated logarithm law for a certain class of self-similar 
processes and ([2]) furnish us with general information on Gaussian 
chaos which were introduced by N. Weiner.

In chapter 2, we give some definitions and get that some SaS distri­
bution has the same distribution as the first arrival time of Brownian 
motion. In chapter 3, we show that {X(i),t > 0} is H-self-similar 
and has continuous sample paths under some conditions on the kernel 
Qt- In chapter 4, we consider the stochastic integral processes repre­
sented by multiple Ito-Wiener integral. We prove the continuity and 
self-similarity of this integral process {1스(i),i > 0}. Finally, we get 
Gaussian chaos which has some shift continuous function.

2. Preliminaries
Definition 2.1. A random variable is said to have an a-stable dis­

tribution if there are parameters 0 <(^ < 2, cr > 0, —1 < ^ < 1 and /z 
real such that its characteristic function has the following form

E*[exp i6X]

( exp{—cr이이0$1 — i0(sign 0) tan 쯜) 十 i/心} if a弓 1, 

[ exp{—이이(1 十 ※으(sign 0) In |이) + 卽月} if a = 1.

We call(J scale parameter, (3 skewness parameter and /丄 shift param­
eter and the parameters are unique. We denote Sa((T, 0, p) an (文-stable 
random variable. If random variable X is a symmetric 아-stable, i.e：, 
/3 = I丄 = 0, then we write X 〜 S(%S(cr).

Example 2.1. The Levy distribution S'i/2(c『, 1,/』) whose density

(으 V/2_j__exp{__으—4
V27T/ (X — /2)3/2 [ 2(⑦ - /l) J
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is concentrated on (/z, oo). If X 〜 5i/2(c『, 1,0), then for ⑦ > 0 ,

p(x — = 2(i-m(유)),
where $ denote the cumulative distribution function of 7\『(0,1) distri­
bution.

Theorem 2.1. Let > Q} be a standard Brownian motion
with a.s. continuous paths. Let Ta denote the Hrst time it reaches the 
level a > 0. Then Ta has the Levy distribution

aSi/2((22,1,0).

Proof. From reflection principle of Brownian motion, we know that 
P(Ta < t) = 2P(JB(t) > a). Thus

P(Ta < i) = 2F(7V(0,i) >a)

= 2F(i1/2川(0,1) > a)

= 2P(7V(0,1) > ar니2}

By Example 2.1 , Ta has Levy distribution. □

Definition 2.2. A stochastic process {X(t),t > 0} is H-self-similar 
(H — ss) if for some H > 0,

{X(ci),i 之 0} 으 {cHX(t)^t > 0} for any c > 0,

where, 으 means the equality of all finite dimensional distributions.

Definition 2.3. A random variable X with values in set C of con­
tinuous functions is a Gaussian chaos if for some(幼(•) G C (i,j = 
1,2,…),

入 =、三 Cij(『)9i9j

where, {gj企i is i.i.d. A『(0,1) random sequence.
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Denote by (Q,F, F) with underlying probability space and L°(Q) 
the set of all real random variables defined on it. Let (E, E, m) be a 
<7—finite measure space and let

Eq == {A e E, m(A) < 00}

be the subset of E that contains sets of finite m-measure.

Definition 2.4. An independentently scattered c『-additive set func­
tion

Ma : 乃0 — L°(Q)

such that for each A e

Ma(A) 〜 ScbS(m(A))

is called an SaS random measure on (E, E) with control measure m.

3. H-ss represented by stable random measure

Consider the processes

X(t) = / Qt(u)dMa(u),

where Qt is of the form

Qw(u) — Qt(u) = Q/i(u) a.e. in u and for any t, 九 之 0, 

and
u

where f is a measurable function.

Lemma 3.1. If f is a measurable function and if f € I으, then the 
process X defined by

X(t) = / Qt{u)dMa(u), t > 0

is an SaS process.
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Proof. For each i > 0,

셔 tH~^ f g) | du = tHa 서 \ f(v)\adv < oo for each t

Thus, Lemma follows from [5, chapter 3.4]. □

Theorem 3.2. {X(i),i > 0} is an H-ss process with stationary in­
crements and has continuous sample paths when H > ,.

Proof. Note that dMa(cu) = c^adMa(u). Since

X(ci) = J Qct(u)dMa(u)

= /(씨…, G9 "아) 

으 셔! 洪능fg)dMa(v)

the sei仁similarity of X(t) holds. Similarly, dMa(u + /z) = dMa(u) and 
assumption on Qt implies the stationary increments.

It is enough to show that for any —oo < a < b < oo, {X(t), a < t < 
b} has continuous sample paths. By the H-sel仁similarity of the process 
and the stationarity of its increments, we have

f(u)dMa(u)\p

for any 0 < p < a and hence the metric generated by the process is of 
the form

dx(t, 昌) = ca\t — s\H.

Let A『(e) be the smallest number of open dx balls of radius e needed 
to cover [tz, b\. Since

A『(e) < C6“”for any 0 < c < ca(b — a)H,
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the assumption H > $ ensures that the condition of [5, Theorem 12.2.1] 
holds. Therefore, {X(t),i >} has continuous sample paths. □

Let
TT 1 TT 1 TT 1 TT 1

f(u) = a{{l — uY广 — (—><=} + 6{(1 — u)브-〜 — (―?望-허},

where, a and b are some constants. Then X(i) is a fractional Brownian 
motion (FBM) if a = 2 and a linear fractional stable motion (LFSM) 
if Of < 2. Let us apply Theorem 3.2 to FBM and LFSM which are two 
major sei仁similar time series to investigate long-range dependence from 
modeling view points.

Since

Qt(u) = a{(t — <"* — (—明-斗 + b{(i — u)H느 — (―?望-計

is in」La(_R), X(i) is SaS process by Lemma 3.1. For the self-similarity,

X(ct) = , a{(ci —?i)： a — (-w)： Q }

+b{(ct — u)1广 — (-w) 브—허}>dMa (以)

= 서 a{(ct — — (—c?z)：-허}

7— 丄 TT_ X
+b{(ct — cu)_ a — (—cn)_ a }dMa(cu)

으 CH능含 j a{(t — uY：능 — (、—u)《능}

+6{(i — u)Y~= -

By dMa(u + h) = dMa(u), the stationary increment property holds. 
And, Theorem 3.2 implies {X(i), t > 0} has continuous sample paths 
when H>$.
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4. H-ss represented by Ito-Wiener integrals

Let {Qt(tii, …，以m)北 > 0} be a square integrable symmetric 
function on and be assumed to be of the form

QG，Mr**, 以m) = tH-끌 f (끄, …, 뿌) , 

where, / is a bounded continuous function on」Rm such that

/ • • • / /2(M, 以沙 … , Um)dui • • • dum < oo.
J J Rm

Consider the processes represented by the multiple Ito-Wiener inte­
grals

y스(i) = / • • ’ / * * * , ?』m)成日(M)’ ’ ‘
J J Rm

where, the right-hand side is a m-multiple Wiener integral with respect 
to standard Brownian motion u > 0}.

Lemma 4.1. For any stochastic process {Z(i),i > 0}, if there exist 
constants A > Q and 0 < H < 1 such that

[乃|Z(Z + /z) —Z(i)|2p'2 으 "門, (t>0, 0</i< 1), 

then the processes {Z(i),i > 0} may be supposed to have continuous 
sample paths.

Proof. See [3, Lemma 6.2]. □

Theorem 4.2. {1스(Z), t >0} is self-similar with index H, 0 < H < 
1.

Proof. For the self-similarity of {Kn(i),i > 0}, we know that

= [ … [ Qct(M,M, •• •)(%(以1)0旧(以2)• • •心B(以m)
J J

= /■■■ L(ct)H~패2 f 쁘…쀠dBM ■
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T 4■ 以 1 Um rpiLet — = 沙1, • … , —— = vm. Inen c c

匕n(c') = , … J (比)휴-m'2/(누，-- dB(cvi) - - - dB(cvm)

으 CHI … 心1… f Q, ...뿌) 0(%).. • dB(Vm)

= C石'匕수). [j

Theorem 4.3. t > 0} has continuous sample paths under 
the following condition : there exists A such that

/ - j [(1 + h'H~뜰f (1쓰I’ • • • ’ 끄뿌)-*1’ • • • ’ 니

dui • • • dum<Ah?H

for Q < h < 1.

Proof. It suffices to show that

[E\Ym(t + h) — Kn(i)|2]x'2 < AhH

for some A, A (0 < < 1).

E\Ym(t + h)-Ym(t)\2

= 꾀 I I 以2? ’ ‘ ’ , 以m) — Qt(M? M? ’ ’ ’ ? 인'm)
J J Rm

d』3(tli)cLB(以2)• • •(%(以m)|2

Doob-Meyer decomposition Theorem ([1, Theorem 4.10]) implies
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乃 IYUZ + /0 —K강 （i）l2
= …끄’?끄

—tH-끌/（꾸, 쯔,•••，뿌）] du1du2 - - - dum

= /7〜lKr'（꼬’끄’ 1 + h/t

<

2
duidu2 • • • dum

I I 0十：） 2;（1W’1W’

—/（沙1, 沙2, • … , 沙m）]2 dvrdv2 • • • dvm

沙 1 沙 2

Therefore,

[EG（i + 九） — 珠«] 七本/門.

By Lemma 4.1, {y^（i）5 i > 0} has continuous sample paths. □

For each t > 0, let Qt（ui,?i2） 

kernel on [0,1] x [0,1] such that

=tH-引씁씁'） be a continuous

is continuous at each i > 0. Let

^2（i） = Qt（M, 以 2）d』3（M）心B（M）
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be a double Ito-Wiener integral such that the stochastic process {!$(/), i 
> 0} has a continuous version.

Lemma 4.4. Let {hi, i > 1} be a family of Haar functions.

(j) If i = j, then

h^u^hj^dB^dB^ = 2fc+1B2 -1

(ii) If i 牛 j, then

니少!)hj (u2)dB (u^dB (u2)

/ /사(m)cLB(m) • / hj(U2)dB(u2)
Jo Jo

Proof, (i) By definition of Haar function and reflection principle of 
Brownian motion, it follows
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Here,

dB{ui)dB(U2)

dB(Ui)dB{u2)

스 (tii) hj (m )dB{u^)dB (u2)

4 =

n

(ii) By independent increment property of Brownian motion,

hi(ui)hj(w) rfB (%) d B (以2)

/ 스(以i)rfB(以i) • / hj(U2)dB(u2).
Jo Jo □
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Theorem 4.5. Let t >Q} be stochastic processes which have 
continuous version as stated above. Then there exists fixed shift con­
tinuous function F E C such that

(1$ + F)(t) = 시 cij(t)9i9j

where, {Gj(i)；h j > 1} is a sequence of C and {g$,i > 1} is an i.i.d. 
sequence of A『(0,1) random variables.

Proof. Since is continuous on [0,1] x [0,1], Qt has the
following F이irier-Haar expansion,

oo
（2t（M?M）= 스 스 仁ij（$）벼（、인'i）hj（、피이） 

幼=i

where,

(2i(M, U2)hi(u1}hj(u2)du1du2.

Then

MO = Qt(M, d』B(u—)dB(u2)
Jo Jo

N
Jim '江(W)N—wo 4—/

ij=l
hi^Ui) hj (u2) dB (m) dB (u2).

1
Since / hi(u)dB(u) is a standard normal random variable for each 

Jo

으 = 1, 2，… , we can put g$ = / hi{u)dB{u). By Lemma 4.4, 
Jo

슈）

N
= Jim 22旬世)(切功-M

7V—>oo 아—으 i,j=l
oo oo

= 리 cij(f)9i9j - 드三 cii (') •
幼=1 2=1
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We know that du is continuous and

Let F(t) = 門-1『 f 
Jo

du. Therefore, we get F e C and

oo
Y2(t)+F(t) = 乞 ⑶(i)切的.

L=i □
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