# ON THE LIPSCHITZ CLASSES OF PERIODIC STOCHASTIC PROCESSES I 

Jong Mi Choo


#### Abstract

In this paper, T.Kawata's result[2] is generalized, by means of Hausdorff-Young inequality and Beurling's norm.


## 1. Introduction.

Throughout this paper, $(\Omega, \mathcal{F}, P)$ is the underlying probability space and $X(t, \omega), t \in \mathbf{R}$, is a stochastic process of the $r$-th order, $r \in[1, \infty)$, that is,

$$
\|X(t, \omega)\|_{r}=\left(E|X(t, \omega)|^{r}\right)^{\frac{1}{r}}<\infty .
$$

We say $X(t, \omega)$ is periodic with period $2 \pi$, if

$$
\|X(t+2 \pi, \omega)-X(t, \omega)\|_{r}=0 \quad \text { for every } t
$$

and

$$
\int_{-\pi}^{\pi}\|X(t, \omega)\|_{r}^{r} d t<\infty
$$

The class of $2 \pi$-periodic processes of the $r$-th order will be denoted by $L_{p}^{r}$.

Let $\phi(h)$ be a positive nondecreasing function of $\mathrm{h} \in(0,1]$. Write

$$
\Delta_{h}^{j} X(t, \omega)=\sum_{\nu=0}^{j}(-1)^{j-\nu}\binom{j}{\nu} X(t+\nu h, \omega),
$$

Received by the editors on June 14, 1999.
1991 Mathematics Subject Classifications: Primary 60G12.
Key words and phrases: Lipschitz classes, periodic stochastic processes, Fourier series.
where $j$ is a positive integer. The class of $X(t, \omega)$ with the property

$$
\sup _{h>0} \int_{-\pi}^{\pi}\left(\frac{\left\|\Delta_{h}^{j} X(t ; \omega)\right\|_{r}}{\phi(h)}\right)^{r} d t<\infty
$$

is denoted by $\Delta_{j, r}^{*}(\phi)$ and is called the Lipschitz class $\Delta_{j, r}^{*}(\phi)$.
For a stochastic process $X(t, \omega)$ of $L_{p}^{r}$ which belong to $\Delta_{j, r}^{*}(\phi)$, we consider the Fourier series

$$
X(t, \omega) \sim \sum_{n=-\infty}^{\infty} C_{n}(\omega) e^{i n t}
$$

where

$$
C_{n}(\omega)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(t, \omega) e^{-i n t} d t
$$

T.Kawata[2] proved the following theorem 1 relating to discuss sample continuity and differentiability of stochastic processes.

Theorem 1. Let $X(t, \omega) \in L_{p}^{a}, 1<a \leq 2$ and $\frac{1}{a}+\frac{1}{a^{\prime}}=1$. Let $K$ be a given nonnegative integer. If there exists a positive integer $j$ such that

$$
\sum_{n=1}^{\infty} n^{k-\frac{1}{a^{\prime}}}\left[\phi\left(\frac{1}{n}\right)\right]^{-1} M_{a}^{(j)}\left(\frac{1}{n}\right)<\infty
$$

then

$$
\sum_{n=-\infty}^{\infty}|n|^{k}\left[\phi\left(\frac{1}{n}\right)\right]^{-1}\left|C_{n}(\omega)\right|<\infty
$$

almost surely, where $\phi$ is a positive nondecreasing continuous function on $(0,1]$ such that $\phi(2 t)<K \phi(t)$ and

$$
M_{a}^{(j)}(\delta)=\sup _{|h| \leq \delta}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left\|\Delta_{h}^{j} X(t, \omega)\right\|_{a}^{a} d t\right)^{\frac{1}{a}} .
$$

In this paper, we extend the above result by the Hausdorff-Young inequality and the Beurling norm. ( K is a constant which may be different in each occurrence.)

## 2. Main Results.

Theorem 2. Let $1<a \leq 2, \frac{1}{a}+\frac{1}{a^{\prime}}=1,0<p \leq a^{\prime}$ and $j$ be a positive integer. Then, for $X(t, \omega) \in L_{p}^{a}$, we have

$$
\begin{aligned}
& a^{\prime}\left|\left\|\left|C_{n}(\omega)\left\|_{a}|n|^{\frac{1}{a^{\prime}}-\frac{1}{p}}\left[I\left(\frac{1}{|n|}\right)\right]^{-1}\right\|_{p}\right.\right.\right. \\
& \quad \leq K\left(\int_{0}^{1}\left[\int_{-\pi}^{\pi}\left\|\Delta_{h}^{j} X(t, \omega)\right\|_{a}^{a} d t\right]^{\frac{p}{a}}\left[I(h)^{p} h\right]^{-1} d h\right)^{\frac{1}{p}}
\end{aligned}
$$

where we denote $I(h)$ a positive nondecreasing function on ( 0,1$]$ such that $I(2 h) \leq K I(h)$ and ${ }_{a}\|\cdot\|_{p}$ is the Beurling norm.

Theorem 2 is an analogue of a result in [4] for the ordinary Fourier series. The proof of Theorem 2 is based on the following inequality.

Theorem 3. (I) Let $1 \leq a \leq 2$ and let $a^{\prime}$ be the conjugate exponent of $a$. Let $X(t, \omega) \in L_{p}^{a}$, then

$$
\left[\sum_{n=-\infty}^{\infty}\left\|C_{n}(\omega)\right\|_{a}^{a^{\prime}}\right]^{\frac{1}{a^{\prime}}} \leq K\left[\int_{-\pi}^{\pi}\|X(t, \omega)\|_{a}^{a} d t\right]^{\frac{1}{a}}
$$

(II) Let $1 \leq a \leq 2$ and let $a^{\prime}$ be the conjugate exponent of $a$. If $\left\{\left\|C_{n}(\omega)\right\|_{a}\right\} \in l^{a}$, then there exists a stochastic process $X(t, \omega) \in L_{p}^{a^{\prime}}$ such that $C_{n}(\omega)$ is the Fourier coefficients of $X(t, \omega)$ and

$$
\left[\int_{-\pi}^{\pi}\|X(t, \omega)\|_{a}^{a^{\prime}} d t\right]^{\frac{1}{a^{\prime}}} \leq K\left[\sum_{n=-\infty}^{\infty}\left\|C_{n}(\omega)\right\|_{a}^{a}\right]^{\frac{1}{a}}
$$

Proof. (I) By the Hausdorff - Young inequality for the ordinary Fourier series, we have

$$
\left[\sum_{n=-\infty}^{\infty}\left|C_{n}(\omega)\right|^{a^{\prime}}\right]^{\frac{a}{a^{\prime}}} \leq K \int_{-\pi}^{\pi}|X(t, \omega)|^{a} d t
$$

Taking expectations of both sides, we have

$$
\begin{equation*}
E\left[\sum_{n=-\infty}^{\infty}\left|C_{n}(\omega)\right|^{a^{\prime}}\right]^{\frac{a}{a^{\prime}}} \leq K \int_{-\pi}^{\pi}\|X(t, \omega)\|_{a}^{a} d t \tag{2}
\end{equation*}
$$

Now we estimate the left from below. Let $\frac{a^{\prime}}{a}=\alpha \geq 1$. Then, by the Minkowski inequality,

$$
\begin{align*}
{\left[\sum_{n=-\infty}^{\infty}\left(E\left|C_{n}(\omega)\right|^{a}\right)^{\alpha}\right]^{\frac{1}{\alpha}} } & \leq E\left[\sum_{n=-\infty}^{\infty}\left|C_{n}(\omega)\right|^{a \alpha}\right]^{\frac{1}{\alpha}}  \tag{3}\\
& =E\left[\sum_{n=-\infty}^{\infty}\left|C_{n}(\omega)\right|^{a^{\prime}}\right]^{\frac{a}{a^{\prime}}}
\end{align*}
$$

The left of (3) is $\left[\sum_{n=-\infty}^{\infty}\left\|C_{n}(\omega)\right\|_{a}^{a^{\prime}}\right]^{\frac{a}{a^{\prime}}}$ and the last part of(3)is the left of (2). Therefore we have the conclusion.
(II) By the assumption, we have $\left\{C_{n}(\omega)\right\} \in l^{a}$ almost surely. Therefore, by the classical discussion, we have a stochastic process $X(t, \omega)$ whose Fourier coefficients is $C_{n}(\omega)$ and

$$
\left[\int_{-\pi}^{\pi}|X(t, \omega)|^{a^{\prime}} d t\right]^{\frac{a}{a^{\prime}}} \leq \sum_{n=-\infty}^{\infty}\left|C_{n}(\omega)\right|^{a}
$$

Taking expectations of both sides and using the Minkowski inequality, we have, for $\alpha=\frac{a^{\prime}}{a}$,

$$
\begin{aligned}
\left(\int_{-\pi}^{\pi}\left[E|X(t, \omega)|^{a}\right]^{\alpha} d t\right)^{\frac{1}{\alpha}} & \leq E\left[\int_{-\pi}^{\pi}|X(t, \omega)|^{a \alpha} d t\right]^{\frac{1}{\alpha}} \\
& =E\left[\int_{-\pi}^{\pi}|X(t, \omega)|^{a^{\prime}} d t\right]^{\frac{a}{a^{\prime}}} \\
& \leq \sum_{n=-\infty}^{\infty} E\left|C_{n}(\omega)\right|^{a}
\end{aligned}
$$

that is,

$$
\left[\int_{-\pi}^{\pi}\|X(t, \omega)\|_{a}^{a^{\prime}} d t\right]^{\frac{a}{a^{\prime}}} \leq \sum_{n=-\infty}^{\infty}\left\|C_{n}(\omega)\right\|_{a}^{a}
$$

which is the required.
Once we get the above inequality, the proof of Theorem 2 is a repetition of the argument in the ordinary Fourier series[4].

Now we can derive Theorem 1 from Theorem 2. We need to discuss the case $p=1$, since $\left\|C_{n}\right\|_{1} \leq_{a}\left\|C_{n}\right\|_{1}$ if $a \geq 1$. Take $I(h)=\phi(h) h^{\delta}$, where $\delta=k+1 / a$. Then, the inner part of the left side norm of the inequality in (1) is

$$
\left\|C_{n}(\omega)\right\|_{a}|n|^{\frac{1}{a^{\prime}}-1+\delta}\left[\phi\left(\frac{1}{|n|}\right)\right]^{-1}=\left\|C_{n}(\omega)\right\|_{a}|n|^{k}\left[\phi\left(\frac{1}{|n|}\right)\right]^{-1}
$$

which is not less than $E\left|C_{n}(\omega) \| n\right|^{k}\left[\phi\left(\frac{1}{|n|}\right)\right]^{-1}$.
On the other hand, the right side is not greater than

$$
\begin{aligned}
K \int_{0}^{1} h^{-1-\delta} & {[\phi(h)]^{-1} M_{a}^{(j)}(h) d h } \\
& \leq K \sum_{n=1}^{\infty} \int_{\frac{1}{n+1}}^{\frac{1}{n}} h^{-1-\delta}[\phi(h)]^{-1} M_{a}^{(j)}(h) d h \\
& \leq K \sum_{n=1}^{\infty} n^{1+\delta-2}\left[\phi\left(\frac{1}{n+1}\right)\right]^{-1} M_{a}^{(j)}\left(\frac{1}{n}\right)
\end{aligned}
$$

Since $1+\delta-2=k-1 / a^{\prime}$ and $\phi\left(\frac{1}{n+1}\right) \geq K \phi\left(\frac{1}{n}\right)$, we have the desired result.

## References

1. J.M.Choo, A Note on the Lipschitz Classes of Periodic Stochastic Processes, J.Chungcheong Math.Soc. 8 (1995), 45-53.
2. T.Kawata, Absolute convergence of Fourier series of periodic stochastic processes and its applications, Tohoku Math.Journ 35 (1983), 459-474.
3. T. Kawata, Lipschitz Classes and Fourier Series of Stochastic Processes, Tokyo J.Math 11,No 2 (1988), 269-280.
4. M.Kinukawa, Some generalizations of contraction theorems for Fourier series, Pacific J.Math. 109 (1983), 121-134.

Department of Mathematics
Mokwon University
TAEJON 302-729, Korea
E-mail: jmchoo@mokwon.ac.kr

