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ON THE HENSTOCK INTEGRAL

Dong IL RiMm AND WoN Kyu KiMm

ABSTRACT. In this paper we prove a controlled convergence theorem
for the Henstock integral by using new conditions.

1. Introduction

In the 1950’s J. Kurzweil and R. Henstock independently gave a Rie-
mann Complete type integral, called the Kurzweil-Henstock integral (or
- KH-integral /H-integral). It has been proved that this integral is equiv-
alent to the special Denjoy integral. Therefore the Henstock integral
contains the Newton, Riemann and Lebesgue integrals. In 1985, P. Y.
Lee and T. S. Chew [6, 7] gave the controlled convergence theorem.
But we want to find a better convergence theorem. In this paper, using
the UACG; property, we give a controiled convergence theorem.
First we introduce some necessary terms. Throughout this paper
D will denote a finite collection of non-overlapping tagged intervals in
fa,b]. For D = {(t;,[e;,di]) : 1 < i < N}, we will write

N

N
FDy =" ft)di ~ ), F(D) =3 (F(d) - Fles)),
i=1

i=1

N

and p(D) =) (di —c).

=1
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Let & be a positive function defined on [a,b]. We say that D is
subordinate to 4 if [¢;, d;] C (t; — 8(t;), t; + 6(t;)) for each ¢ and that D
is subordinate to é on {a, b] if in addition D is a partition of [a,b]. A
real-valued function f is said to be Henstock integrable to A on a closed
bounded interval [a, ] if for every ¢ > 0 there is a function 6(¢) > 0
such that whenever a division D given by

a=2p< B <<z, =b

satisfles 0 < z; — & < 6(&)yand 0 < & — 21 < 0(&) fori=1,2,...,n
we have

1> i €)@ —zi) - A <,
=1
or alternatively,

1Y f@w-—w) - 4| <e

where [u,v] denotes a typical interval in D with £ — §(§) < u £ £ <
v < &+ 6(£). Such a division D is said to be compatible with §(£).

2. Preliminaries

DEFINITION 2.1. (a) A function on [a,d] is ACG} on X C [a,] if
X is the union of a sequence of subsets X; such that F' is AC}(X;) for
each 7, i.e., for every € > O there are 7 > 0 and 6(£) > 0 such that
for any é-fine partial divisionD = {([u,v],€)} with & € X; satisfying
(D) > |v—u| < n we have (D} Y |F(u,v)| <e.

(b) The sequence {F,} is UACG} on X C [a,b] if X is the union
of a sequence of subsets X; such that {F,} is UAC;(X;) for each ¢,
independent of n.

DEFINITION 2.2. Let {F,} be a sequence of functions defined on
la,b] and let X C [a,b] be measurable.
(a) The sequence {F,} is P-Cauchy on E if {F,} converges pointwise
on X and if for each € > 0 there exist a positive function 4 on X and
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a positive integer N such that |F,(D) — Fp(D)| < e forall m,n > N
whenever D is X-subordinate to 4.

(b) The sequence {F,} is gencralized P-Cauchy on X if X can be
written as a countable union of measurable sets on each of which {F},}
is P-Cauchy.

Define fx(z) = f(z) when z € X and fx(z) = 0, otherwise.

THEOREM 2.1. Let the following conditions be satisfied:

(i) fax(X) = fx(z) almost everywhere in [a,b] as n — oc where
each f, x is Henstock integrable on [a, b];

(ii) the primitives F, x of f, x are UAC(X) with closed set X in
[a, ).

- Then fx is Henstock integrable on [a,b] with the primitive Fx.

Proof. By (ii}, for every € > 0 there exist a §(¢) > 0 and an 5 > 0,
both independent of n, such that for any 4-fine partial division D of X
satisfying

(D) Z v —u| <n wehave (D) Z |Fo,x (u,v)| < &.
By Egoroff’s theorem, there is an open set & with |G| <  such that

[Fal8) - fm(&)| <e forn,m > N and £ ¢ G.

Consider the following, in which D is a é-fine division of [z,y] and
D = D, U D, so that D, contains the intervals with the associated
points £ € G and D, otherwise,

P (@) = Fux(@y) = [ (D) Y {Fax(,v) = Fax(u,0)}|

(D1) Y | Fax(2,v) = fax(€)(v —u)|
+(D1) Y | P x (1,0) = frn x () (v — u) |
HD1) Y 1 fnx (€)= fx (O] (v — )
+H(D2) 3 | Fax(u,0) |

IN
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+(D2) Y | Fon x (1, 0) |
< ed+b-a).

Hence, for any partial division D of [a, b} we have
| (D) Y {Fox (1,0) = Fn x(,0)} ‘ <e formm> N.

Therefore the sequence { F;, x } is generalized P-Cauchy on [, 8]. By [2,
Theorem 13.32], fx is Henstock integrable on [a,b] with the primitive
Fy. O

DEFINITION 2.3. (a) A sequence {F},} of functions is uniformly-ACY

on X whenever to each £ > 0 there exist » > 0 and a gage § : X — R*
such that

sup
n

> Rl - Z Fo(Ly) I <¢, (1)

T €Py LyePy
for each Py, P, € [[(X;6) with

| (UP) A (UP) | < . (2)

(b) A sequence {F,} of functions is uniformly-ACGY on [a, b] if [a, b] =
U; X; where X; are measurable sets and {#,} is uniformly-ACY on each
X;.

PROPOSITION 2.2. If {F,} is uniformly-ACGY, then {F,} is
uniformly-ACGj.

Proof. Let [a,b] = U, X; be such that {F,} is uniformly-ACY on each
Xi. So to each € > 0 there exist a constant > 0 and a gage §
on each X; such that (1) holds for each P, P, € [](X;;4) satisfying
condition (2). Take D = {([cx, dr), ze)}ouy with D ldx — k] <
and put Py = {([e,dr), x) @ Fpler,dx) > 0}, Py = {([ck, di), )
Faler,de) < 0}, So |[(UP) A (UR)| = |UD| =370_ldy —c| < 7
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and (2) holds. Then by (1)

P .
SUPZ |[Fnlck,di)| = supl Z Folex, dg) — Z Fo(e,dp) | <e
" k=1 (ex,dx)EP _ (ck dr)EP2

Hence {F,} is uniformly-ACG}. O

We get following theorem by Theorem 2.1 and Proposition 2.2.

THEOREM 2.3. Let the following conditions be satisfied:

(i) fax(X) — fx{(x) almost everywhere in [a,b] as n — oo where
each f, x is Henstock integrable on [a, b);

(ii) the primitives F, x of f, x are UAC"(X) with closed set X in
[a, b].

Then fx is Henstock integrable on [a,b] with the primitive Fy.

3. Controlled convergence theorem

DEFINITION 3.1. Let F': [a,b] = R and let X C [a,b]. A function
Fis ACs on X if for each ¢ > 0 there exist a positive number 7
and a positive function § on X such that |F(D)| < ¢ whenever D is
subordinate to ¢, all of the tags of D are in X, and u(D) < 5. A
function F is ACGs on [a,d] if [a,b] is the union of a sequence of set
{ X} such that the function F is ACs(X;) for each i.

DEFINITION 3.2. Let F': [a,b] — R and let X C [a,b]. A function F
is AC*(X) if for every € > 0 there is > 0 such that for every finite or
infinite sequence of non-overlapping intervals {[ax, b|} with ay, b, € X

Z |br — ax| < n implies Zw(F; lax, b)) < ¢
p k
where w denotes the oscillation of F over [az, by]. A function F is

ACG* on [a,b] if F is continuous and [a, b] is the union of a sequence
of sets {X;} such that the function F' is AC*(X,) for each i.
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PROPOSITION 3.1. A function F is ACG;s on {a,b) if and only if it
is ACG* on [a,b].

Proof. See [3, Theorem 5, Theorem 6]. O

THEOREM 3.2. The following conditions be satisfied:

() fa(z) — f(z) almost everywhere in [a,b] as n — co where each
f,. is Henstock integrable on [a, b];
(ii) the primitives F,, of f, are UACGs;
(iii) the sequence F), converges uniformly to a continuous function F
on [a,b].

Then f is Henstock integrable on {a, b] with the primitive F'.

Proof. By condition (ii) there exists a sequence {X;}, [a,0] = U2, X;
such that F, € UAC; in X; a bounded, closed set with bounds @ and b
and put X = X;. Since F, — F everywhere on [a,b] by (iii}, we have
F € AC; on X and hence F' € ACG; on [a,b]. By Proposition 3.1,
F € AC* on X and hence F € ACG* on [a,b] and also FF € AC
on X and hence F € ACG on [a,b]. Now we prove F'(z) = f(z)
almost everywhere on [a,b]. Let G, : [a,b] = R equal F; on X, and
extend G, linearly to the closed intervals contiguous to X. Likewise
we define GG from F. We see that G, and G are uniformly absolutely
continuous on [a, b]. First we will prove G'(¢) = f(z) almost everywhere
on X. By (iii) G,(z) — G(z) on [a,}]. Let [cy,di], £ = 1,2, - be the
intervals contiguous to X. Then we have |G, (z)] < My, 7 € (cx, di),
n=1,2,..., and hence for k = 1,2, ..., {G,} € AC([cg, di]) uniformly.
Further,

Gn(dk) - Gn((-'k)
dk — Cp

Gl (z) = , € {ck,di).

Consequently, G/, (x) converges on (cx, d), k = 1,2,.... Hence G}, con-
verges on |a,b] almost everywhere. Since {G,} € AC on X uniformly,
then G (z) = fo(x) on X and G},(2) = fu(z) — f(z) on X. Therefore
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by [7] Corollary 7.7, G'(z) = g{z) = f(z) = F'(z) almost everywhere
on X. Thus F'(z) = f(z) almost everywhere on [a, b] by Theorem 2.1.
Therefore there exists an ACGy function F on [a,b] such that F' = f
almost everywhere on [a,b]. Hence f is Henstock integrable on [a, 8]
with the primitive F' by [2, Theorem 9.17]. ' O
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