ON $Q S$-ALGEBRAS

Sun Shin Ahn* and Hee Sik Kim**

Abstract

In this paper, we introduce a new notion, called an $Q S$ algebra, which is related to the areas of $B C I / B C K$-algebras and discuss the G-part of $Q S$-algebras.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$-algebras and $B C I$-algebras ($[3,4]$). It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. In [1, 2] Q. P. Hu and X. Li introduced a wide class of abstract algebras: $B C H$-algebras. They have shown that the class of $B C I$-algebras is a proper subclass of the class of $B C H$-algebras. Recently, Y. B. Jun, E. H. Roh and H. S. Kim ([6]) introduced a new notion, called a $B H-$ algebra, i.e., (I) $x * x=0$; (II) $x * 0=x$; (VI) $x * y=0$ and $y * x=0$ imply $x=y$, which is a generalization of $B C H / B C I / B C K$-algebras, and showed that there is a maximal ideal in bounded $B H$-algebras. The present authors ([7]) introduced a new notion, called a Q-algebra and generalized some theorems discussed in $B C I / B C K$-algebras. In this paper we introduce a new notion, $Q S$-algebra and discuss some properties of the G-part of $Q S$-algebras.

[^0]
2. $Q S$-algebras

A Q-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying axioms:

$$
\begin{align*}
& x * x=0, \tag{I}\\
& x * 0=x, \tag{II}
\end{align*}
$$

(III) $(x * y) * z=(x * z) * y$
for all $x, y, z \in X$.
Every Q-algebra X satisfies following condition:
(IV) $\quad(x *(x * y)) * y=0$
for any $x, y \in X$.
Definition 2.1. A Q-algebra $(X ; *, 0)$ is called a $Q S$-algebra if (V) $\quad(x * y) *(x * z)=z * y$ for all $x, y, z \in X$.

For brevity we shall call X a $Q S$-algebra unless otherwise specified. In X we define a binary relation \leq by $x \leq y$ if and only if $x * y=0$. Note that every $Q S$-algebra is a Q-algebra.

Example 2.2. Let \mathbb{Z} be the set of all integers and let $n \mathbb{Z}:=$ $\{n z \mid z \in \mathbb{Z}\}$. Then $(\mathbb{Z} ;-, 0)$ and $(n \mathbb{Z} ;-, 0)$ are both Q-algebras and $Q S$-algebras, where "-" is the usual subtraction of integers. Also, $(\mathbb{R} ;-, 0)$ and $(\mathbb{C} ;-, 0)$ are Q-algebras and $Q S$-algebras where \mathbb{R} is the set of all real numbers, \mathbb{C} is the set of all complex numbers and "-" is the usual subtraction of real (complex) numbers.

Example 2.3. Let $X=\{0,1,2\}$ with the Cayley table as follows:

$*$	0	1	2
0	0	0	0
1	1	0	0
2	2	0	0

Then X is both a Q-algebra and a $Q S$-algebra, but not a $B C H / B C I$ / $B C K$-algebra, since (VI) does not hold.

Example 2.4. Let $X=\{0,1,2, \cdots, \omega\}$ in which $*$ is defined by

$$
x * y:= \begin{cases}0 & \text { if } x \leq y \\ \omega & \text { if } y<x \text { and } y \neq 0 \\ x & \text { if } y<x \text { and } y=0\end{cases}
$$

where \leq is the natural ordering on X and $x<y$ denotes that $x \leq y$ and $x \neq y$. Then $(X ; *, 0)$ satisfies (I), (II) and (III), but not (V) since $((2 * 1) *(2 * 0)) *(0 * 1)=\omega \neq 0$. Therefore $(X ; *, 0)$ is a Q-algebra which is not a $Q S$-algebra.

Proposition 2.5. Let X be a $Q S$-algebra. Then for any x, y and z in X, the following hold :
(a) $x \leq y$ implies $z * y \leq z * x$,
(b) $x \leq y$ and $y \leq z$ imply $x \leq z$,
(c) $x * y \leq z$ implies $x * z \leq y$,
(d) $(x * z) *(y * z) \leq x * y$,
(e) $x \leq y$ implies $x * z \leq y * z$,
(f) $0 *(0 *(0 * x))=0 * x$.

Proof.
(a) If $x \leq y$, then $x * y=0$. By (V), $(z * y) *(z * x)=0$. Hence $z * y \leq z * x$.
(b) If $x \leq y$ and $y \leq z$, then by (a), $x * z \leq x * y$. By applying (II) and $(\mathrm{V}), x * z=(x * z) * 0=(x * z) *(x * y)=y * z=0$. Hence $x * z=0$ and so $x \leq z$.
(c) It follows from (III).
(d) By (I), (III) and (V),

$$
((x * z) *(y * z)) *(x * y)=((x * z) *(x * y)) *(y * z)=(y * z) *(y * z)=0
$$

Thus $(x * z) *(y * z) \leq x * y$.
(e) If $x \leq y$, then by (d) $(x * z) *(y * z) \leq x * y=0$, i.e., $((x * z) *$ $(y * z)) * 0=0$. By applying (II), we obtain

$$
(x * z) *(y * z)=0, \text { i.e., } x * z \leq y * z
$$

(f) $\mathrm{By}(\mathrm{I})$ and (V),
$0 *(0 *(0 * x))=(0 * 0) *(0 *(0 * x))=(0 * x) * 0=0 * x$.
We now investigate some relations between $Q S$-algebras and $B C I /$ $B C K$-algebras. The following theorems are easily proved, and omit the proof.

Theorem 2.6. Every $Q S$-algebra X satisfying the condition (VI) is a $B C I$-algebra.

Theorem 2.7. Every $Q S$-algebra X satisfying the conditions (VI) and
(VII) $\quad(x * y) * x=0$
for any $x, y \in X$ is a $B C K$-algebra.
Theorem 2.8. Every $Q S$-algebra X satisfying $x *(x * y)=x * y$ for all $x, y, z \in X$ is a trivial algebra.

Proof. Putting $x=y$ in the equation $x *(x * y)=x * y$, we have $x * 0=0$. By (II), $x=0$. Hence X is a trivial algebra.

3. The G-part of $Q S$-algebras

In this section, we investigate the properties of G-part in $Q S$ algebras.

For any $Q S$-algebra X, the set

$$
B(X):=\{x \in X \mid 0 * x=0\}
$$

is called a p-radical of X. A $Q S$-algebra X is said to be p-semisimple if $B(X)=\{0\}$.

Definition 3.1. Let X be a $Q S$-algebra. For any subset S of X, we define

$$
G(S):=\{x \in S \mid 0 * x=x\} .
$$

In particular, if $S=X$ then we say that $G(X)$ is the G-part of a $Q S$-algebra X.

The following property is obvious.

$$
G(X) \cap B(X)=\{0\}
$$

Lemma 3.2. If X is a $Q S$-algebra, then $a * b=a * c$ implies $0 * b=$ $0 * c$, where $a, b, c \in X$.

Proof. By (I) and (III), $(a * b) * a=(a * a) * b=0 * b$ and $(a * c) * a=$ $(a * a) * c=0 * c$. Since $a * b=a * c, 0 * b=0 * c$.

Corollary 3.3. Let X be a $Q S$-algebra. Then the left cancellation law holds in $G(X)$.

Proof. Let $a, b, c \in G(X)$ with $a * b=a * c$. By Lemma 3.2, $a * b=a * c$ implies $0 * b=0 * c$. Since $b, c \in G(X), b=c$.

Definition 3.4. A $Q S$-algebra X satisfying

$$
(x * y) *(z * u)=(x * z) *(y * u)
$$

for any x, y, z and $u \in X$ is called a medial $Q S$-algebra.
Proposition 3.5. In a medial $Q S$-algebra, the following identity holds:

$$
x *(x * y)=y
$$

for any $x, y \in X$.
Proof. Since X is medial, by applying (I), (II) and (V), $x *(x * y)=$ $(x * 0) *(x * y)=(x * x) *(0 * y)=0 *(0 * y)=(0 * 0) *(0 * y)=y * 0=y$.

Theorem 3.6. In a $Q S$-algebra X, the following are equivalent: for any x, y, z and $u \in X$,
(a) $(x * y) *(z * u)=(x * z) *(y * u)$,
(b) $x *(y * z)=(x * y) *(0 * z)$.

Proof. (a) $\Longrightarrow(\mathrm{b})$: Putting $z:=0$ and $u:=z$ in (a), we obtain

$$
(x * y) *(0 * z)=(x * 0) *(y * z)=x *(y * z) .
$$

$\mathrm{b}) \Longrightarrow(\mathrm{a})$: By (III), we have $(x * y) *(z * u)=(x *(z * u)) * y=$ $((x * z) *(0 * u)) * y=((x * z) * y) *(0 * u)=(x * z) *(y * u)$. This completes the proof.

Let X and Y be $Q S$-algebras. A mapping $f: X \rightarrow Y$ is called a homomorphism if

$$
f(x * y)=f(x) * f(y), \quad \forall x, y \in X
$$

It is easy to see that the set $\operatorname{Hom}(X)$ of all homomorphisms of X is a medial $Q S$-algebra, whenever X is a medial $Q S$-algebra.

Lemma 3.7. Let X be a medial $Q S$-algebra. Then the right cancellation law holds in $G(X)$.

Proof. Let $a, b, x \in G(X)$ with $a * x=b * x$. Then $x * y=(0 * x) * y=$ $(0 * y) * x=y * x$ for any $y \in G(X)$. By Proposition 3.5,

$$
a=x *(x * a)=x *(a * x)=x *(b * x)=x *(x * b)=b .
$$

Definition 3.8. Let X be a $Q S$-algebra and $I(\neq \emptyset) \subseteq X . I$ is called an ideal of X if it satisfies: for all $x, y, z \in X$,
(i) $0 \in I$,
(ii) $x * y \in I$ and $y \in I$ imply $x \in I$.

Obviously, $\{0\}$ and X are ideals of X. We shall call $\{0\}$ and X a zero ideal and a trivial ideal, respectively. An ideal I said to be proper if $I \neq X$.

Theorem 3.9. In a medial $Q S$-algebra $X, G(X)$ is an ideal of X.
Proof. For all $x \in G(X), 0 * x=x \in G(X)$. Hence $0 \in G(X)$. Next, if $x * y \in G(X), y \in G(X)$, then $0 * y=y$ and $0 *(x * y)=x * y$. Hence $x *(0 * y)=x * y=0 *(x * y)=(0 * 0) *(x * y)=(0 * x) *(0 * y)$, since X is medial. By Lemma 3.7, we obtain $x=0 * x$ and hence $x \in G(X)$. This means that $G(X)$ is an ideal of X, completing the proof.

A $Q S$-algebra X is said to be associative if
(VIII) $(x * y) * z=x *(y * z)$.

If X is an associative $Q S$-algebra, then for any $x \in B(X)$,

$$
0=(x * x) * x=x *(x * x)=x * 0=x .
$$

Thus $B(X)$ is a zero ideal, i.e., $B(X)=\{0\}$. Hence any associative $Q S$-algebra X is p-semisimple.

Let X be an associative $Q S$-algebra and $x, y \in G(X)$. Then
$0 *(x * y)=0 *((x * 0) * y)=0 *(x *(0 * y))=(0 * x) *(0 * y)=x * y$.
Hence $x * y \in G(X)$, i.e., $G(X)$ is closed under " $*$ ". For any $x \in G(X)$, we have $0 * x=x$. By (II), $x * 0=x$ holds in a $Q S$-algebra X. Therefore $0 * x=x * 0=x$ in the G-part $G(X)$ of an associative $Q S$-algebra X. This means that $(G(X) ; *)$ is a monoid. Moreover, $x * x=0$ shows that x has an inverse and x is an involution. Hence we have the following:

Theorem 3.10. The G-part ($G(X)$;*) of an associative $Q S$-algebra X is a group in which every element is an involution.

Proposition 3.11. An associative $Q S$-algebra X satisfying $0 * x=$ x for any $x \in X$ is commutative, i.e., $x * y=y * x$ for any $x, y \in X$.

Proof. For any $x, y \in X$,

$$
\begin{array}{rlr}
y * x & =0 *(y * x) \\
& =0 *((0 * y) *(0 * x)) & \\
& =0 *((0 *(0 * x)) * y) & {[\text { by (III) })} \tag{III}\\
& =(0 *(0 *(0 * x))) * y & {[\text { by (VIII) })} \\
& =(0 * x) * y \quad[\text { by Proposition } 2.5-(\mathrm{f})] \\
& =x * y,
\end{array}
$$

proving the proposition.
Corollary 3.12. The G-part $(G(X)$;*) of an associative $Q S$ algebra X is an abelian group in which every element is an involution.

Proof. It follows immediately from Proposition 3.11. and definition of the G-part.

References

[1] Q. P. Hu and X. Li, On BCH-algebras, Mathematics Seminar Notes 11 (1983), 313-320.
[2] Q. P. Hu and X. Li, On proper BCH-algebras, Math Japonica 30 (1985), 659-661.
[3] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
[4] K. Iséki, On BCI-algebras, Mathematics Seminar Notes 8 (1980), 125-130.
[5] Y. B. Jun and E. H. Roh, On the BCI-G part of BCI-algebras, Math. Japonica 38 (1993), 697-702.
[6] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Mathematica 1 (1998), 347-354.
[7] S. S. Ahn and H. S. Kim, On Q-algebras, (preprint).
[8] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, 1994.
**
Department of Mathematics
Hanyang University
SEOUL 133-791, Korea
E-mail: heekim@email.hanyang.ac.kr

[^0]: Received by the editors on May 20, 1999.
 1991 Mathematics Subject Classifications: Primary 06F35, 03G25.
 Key words and phrases: (p-semisimple, medial) $Q S$-algebra, homomorphism, ideal.

