JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 12, August 1999

ON QS-ALGEBRAS

SUN SHIN AHN* AND HEE SIK KIM**

ABSTRACT. In this paper, we introduce a new notion, called an QS-algebra, which is related to the areas of BCI/BCK-algebras and discuss the G-part of QS-algebras.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([3, 4]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [1, 2] Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. Recently, Y. B. Jun, E. H. Roh and H. S. Kim ([6]) introduced a new notion, called a BHalgebra, i.e., (I) x * x = 0; (II) x * 0 = x; (VI) x * y = 0 and y * x = 0imply x = y, which is a generalization of BCH/BCI/BCK-algebras, and showed that there is a maximal ideal in bounded BH-algebras. The present authors ([7]) introduced a new notion, called a Q-algebra and generalized some theorems discussed in BCI/BCK-algebras. In this paper we introduce a new notion, QS-algebra and discuss some properties of the G-part of QS-algebras.

Received by the editors on May 20, 1999.

¹⁹⁹¹ Mathematics Subject Classifications: Primary 06F35, 03G25.

Key words and phrases: (p-semisimple, medial) QS-algebra, homomorphism, ideal.

2. QS-algebras

A *Q*-algebra is a non-empty set X with a constant 0 and a binary operation "*" satisfying axioms:

- $(\mathbf{I}) \qquad x * x = 0,$
- (II) x * 0 = x,

(III)
$$(x * y) * z = (x * z) * y$$

for all $x, y, z \in X$.

Every Q^{\perp} algebra X satisfies following condition:

$$(IV)$$
 $(x * (x * y)) * y = 0$

for any $x, y \in X$.

DEFINITION 2.1. A Q-algebra (X; *, 0) is called a QS-algebra if

(V) (x*y)*(x*z) = z*y for all $x, y, z \in X$.

For brevity we shall call X a QS-algebra unless otherwise specified. In X we define a binary relation \leq by $x \leq y$ if and only if x * y = 0. Note that every QS-algebra is a Q-algebra.

EXAMPLE 2.2. Let \mathbb{Z} be the set of all integers and let $n\mathbb{Z} := \{nz | z \in \mathbb{Z}\}$. Then $(\mathbb{Z}; -, 0)$ and $(n\mathbb{Z}; -, 0)$ are both Q-algebras and QS-algebras, where "-" is the usual subtraction of integers. Also, $(\mathbb{R}; -, 0)$ and $(\mathbb{C}; -, 0)$ are Q-algebras and QS-algebras where \mathbb{R} is the set of all real numbers, \mathbb{C} is the set of all complex numbers and "-" is the usual subtraction of real (complex) numbers.

EXAMPLE 2.3. Let $X = \{0, 1, 2\}$ with the Cayley table as follows:

*	0	1	2
0	0	0	0
1	1	0	0
2	2	0	0

Then X is both a Q-algebra and a QS-algebra, but not a BCH/BCI/BCK-algebra, since (VI) does not hold.

34

EXAMPLE 2.4. Let $X = \{0, 1, 2, \dots, \omega\}$ in which * is defined by

$$x*y := \left\{ egin{array}{ll} 0 & ext{if } x \leq y, \ \omega & ext{if } y < x ext{ and } y
eq 0, \ x & ext{if } y < x ext{ and } y = 0, \end{array}
ight.$$

where \leq is the natural ordering on X and x < y denotes that $x \leq y$ and $x \neq y$. Then (X; *, 0) satisfies (I), (II) and (III), but not (V) since $((2 * 1) * (2 * 0)) * (0 * 1) = \omega \neq 0$. Therefore (X; *, 0) is a Q-algebra which is not a QS-algebra.

PROPOSITION 2.5. Let X be a QS-algebra. Then for any x, y and z in X, the following hold :

- (a) $x \leq y$ implies $z * y \leq z * x$,
- (b) $x \leq y$ and $y \leq z$ imply $x \leq z$,
- (c) $x * y \leq z$ implies $x * z \leq y$,
- (d) $(x * z) * (y * z) \le x * y$,
- (e) $x \leq y$ implies $x * z \leq y * z$,
- (f) 0 * (0 * (0 * x)) = 0 * x.

Proof.

(a) If $x \le y$, then x * y = 0. By (V), (z * y) * (z * x) = 0. Hence $z * y \le z * x$.

(b) If $x \le y$ and $y \le z$, then by (a), $x * z \le x * y$. By applying (II) and (V), x * z = (x * z) * 0 = (x * z) * (x * y) = y * z = 0. Hence x * z = 0 and so $x \le z$.

- (c) It follows from (III).
- (d) By (I), (III) and (V),

$$((x*z)*(y*z))*(x*y) = ((x*z)*(x*y))*(y*z) = (y*z)*(y*z) = 0.$$

Thus $(x * z) * (y * z) \leq x * y$.

S. S. AHN AND H. S. KIM

(e) If x ≤ y, then by (d) (x * z) * (y * z) ≤ x * y = 0, i.e., ((x * z) * (y * z)) * 0 = 0. By applying (II), we obtain (x * z) * (y * z) = 0, i.e., x * z ≤ y * z.
(f) By (I) and (V),
0 * (0 * (0 * x)) = (0 * 0) * (0 * (0 * x)) = (0 * x) * 0 = 0 * x. □

We now investigate some relations between QS-algebras and BCI/BCK-algebras. The following theorems are easily proved, and omit the proof.

THEOREM 2.6. Every QS-algebra X satisfying the condition (VI) is a BCI-algebra.

THEOREM 2.7. Every QS-algebra X satisfying the conditions (VI) and

(VII) (x * y) * x = 0for any $x, y \in X$ is a BCK-algebra.

THEOREM 2.8. Every QS-algebra X satisfying x * (x * y) = x * yfor all $x, y, z \in X$ is a trivial algebra.

Proof. Putting x = y in the equation x * (x * y) = x * y, we have x * 0 = 0. By (II), x = 0. Hence X is a trivial algebra.

3. The *G*-part of *QS*-algebras

In this section, we investigate the properties of G-part in QS-algebras.

For any QS-algebra X, the set

$$B(X) := \{ x \in X | 0 * x = 0 \}$$

is called a *p*-radical of X. A QS-algebra X is said to be *p*-semisimple if $B(X) = \{0\}$.

DEFINITION 3.1. Let X be a QS-algebra. For any subset S of X, we define

$$G(S) := \{ x \in S | \ 0 * x = x \}$$

In particular, if S = X then we say that G(X) is the *G*-part of a QS-algebra X.

The following property is obvious.

$$G(X) \cap B(X) = \{0\}.$$

LEMMA 3.2. If X is a QS-algebra, then a * b = a * c implies 0 * b = 0 * c, where $a, b, c \in X$.

Proof. By (I) and (III), (a * b) * a = (a * a) * b = 0 * b and (a * c) * a = (a * a) * c = 0 * c. Since a * b = a * c, 0 * b = 0 * c.

COROLLARY 3.3. Let X be a QS-algebra. Then the left cancellation law holds in G(X).

Proof. Let $a, b, c \in G(X)$ with a * b = a * c. By Lemma 3.2, a * b = a * c implies 0 * b = 0 * c. Since $b, c \in G(X), b = c$.

DEFINITION 3.4. A QS-algebra X satisfying

$$(x * y) * (z * u) = (x * z) * (y * u)$$

for any x, y, z and $u \in X$ is called a *medial QS*-algebra.

PROPOSITION 3.5. In a medial QS-algebra, the following identity holds:

$$x \ast (x \ast y) = y$$

for any $x, y \in X$.

Proof. Since X is medial, by applying (I), (II) and (V), x * (x * y) = (x * 0) * (x * y) = (x * x) * (0 * y) = 0 * (0 * y) = (0 * 0) * (0 * y) = y * 0 = y.

THEOREM 3.6. In a QS-algebra X, the following are equivalent: for any x, y, z and $u \in X$,

Proof. (a) \implies (b): Putting z := 0 and u := z in (a), we obtain

$$(x * y) * (0 * z) = (x * 0) * (y * z) = x * (y * z).$$

(b) \implies (a): By (III), we have (x * y) * (z * u) = (x * (z * u)) * y = ((x * z) * (0 * u)) * y = ((x * z) * y) * (0 * u) = (x * z) * (y * u). This completes the proof.

Let X and Y be QS-algebras. A mapping $f: X \to Y$ is called a homomorphism if

$$f(x * y) = f(x) * f(y), \ \forall x, y \in X.$$

It is easy to see that the set Hom(X) of all homomorphisms of X is a medial QS-algebra, whenever X is a medial QS-algebra.

LEMMA 3.7. Let X be a medial QS-algebra. Then the right cancellation law holds in G(X).

Proof. Let $a, b, x \in G(X)$ with a * x = b * x. Then x * y = (0 * x) * y = (0 * y) * x = y * x for any $y \in G(X)$. By Proposition 3.5,

$$a = x * (x * a) = x * (a * x) = x * (b * x) = x * (x * b) = b.$$

DEFINITION 3.8. Let X be a QS-algebra and $I \neq \emptyset \subseteq X$. I is called an *ideal* of X if it satisfies: for all $x, y, z \in X$,

(i) $0 \in I$,

(ii) $x * y \in I$ and $y \in I$ imply $x \in I$.

Obviously, $\{0\}$ and X are ideals of X. We shall call $\{0\}$ and X a zero *ideal* and a *trivial ideal*, respectively. An ideal I said to be *proper* if $I \neq X$.

THEOREM 3.9. In a medial QS-algebra X, G(X) is an ideal of X.

Proof. For all $x \in G(X)$, $0 * x = x \in G(X)$. Hence $0 \in G(X)$. Next, if $x * y \in G(X)$, $y \in G(X)$, then 0 * y = y and 0 * (x * y) = x * y. Hence x * (0 * y) = x * y = 0 * (x * y) = (0 * 0) * (x * y) = (0 * x) * (0 * y), since X is medial. By Lemma 3.7, we obtain x = 0 * x and hence $x \in G(X)$. This means that G(X) is an ideal of X, completing the proof.

A QS-algebra X is said to be *associative* if

(VIII) (x * y) * z = x * (y * z).

If X is an associative QS-algebra, then for any $x \in B(X)$,

$$0 = (x * x) * x = x * (x * x) = x * 0 = x.$$

Thus B(X) is a zero ideal, i.e., $B(X) = \{0\}$. Hence any associative QS-algebra X is p-semisimple.

Let X be an associative QS-algebra and $x, y \in G(X)$. Then

$$0 * (x * y) = 0 * ((x * 0) * y) = 0 * (x * (0 * y)) = (0 * x) * (0 * y) = x * y.$$

Hence $x * y \in G(X)$, i.e., G(X) is closed under "*". For any $x \in G(X)$, we have 0 * x = x. By (II), x * 0 = x holds in a QS-algebra X. Therefore 0 * x = x * 0 = x in the G-part G(X) of an associative QS-algebra X. This means that (G(X); *) is a monoid. Moreover, x * x = 0 shows that x has an inverse and x is an involution. Hence we have the following:

THEOREM 3.10. The G-part (G(X); *) of an associative QS-algebra X is a group in which every element is an involution.

PROPOSITION 3.11. An associative QS-algebra X satisfying 0 * x = x for any $x \in X$ is commutative, i.e., x * y = y * x for any $x, y \in X$.

Proof. For any $x, y \in X$,

y

$$\begin{aligned} * x &= 0 * (y * x) \\ &= 0 * ((0 * y) * (0 * x)) \\ &= 0 * ((0 * (0 * x)) * y) & [by (III)] \\ &= (0 * (0 * (0 * x))) * y & [by (VIII)] \\ &= (0 * x) * y & [by Proposition 2.5-(f)] \\ &= x * y, \end{aligned}$$

 \square

proving the proposition.

COROLLARY 3.12. The G-part (G(X); *) of an associative QSalgebra X is an abelian group in which every element is an involution.

Proof. It follows immediately from Proposition 3.11. and definition of the G-part.

References

- Q. P. Hu and X. Li, On BCH-algebras, Mathematics Seminar Notes 11 (1983), 313-320.
- [2] Q. P. Hu and X. Li, On proper BCH-algebras, Math Japonica 30 (1985), 659-661.
- [3] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
- [4] K. Iséki, On BCI-algebras, Mathematics Seminar Notes 8 (1980), 125-130.
- [5] Y. B. Jun and E. H. Roh, On the BCI-G part of BCI-algebras, Math. Japonica 38 (1993), 697-702.
- [6] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Mathematica 1 (1998), 347-354.
- [7] S. S. Ahn and H. S. Kim, On Q-algebras, (preprint).
- [8] J. Meng and Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, 1994.

DEPARTMENT OF MATHEMATICS EDUCATION DONGGUK UNIVERSITY SEOUL 100-715, KOREA

E-mail: sunshine@cakra.dongguk.ac.kr

*

on QS-algebras

**

DEPARTMENT OF MATHEMATICS HANYANG UNIVERSITY SEOUL 133-791, KOREA

E-mail: heekim@email.hanyang.ac.kr