SOME PROPERTIES ON FINSLER SPACES WITH A QUARTIC METRIC

IL-YONG LEE* AND DONG-GUM JUN**

ABSTRACT. The purpose of the present paper is devoted to a study of some properties on spaces with a quartic metric from the standpoint of Finsler geometry.

0. Introduction

The so-called *quartic metric* on a differentiable manifold with the local coordinates x^i is defined by

(0.1)
$$L(x,y) = (a_{hijk}(x)y^h y^i y^j y^k)^{1/4} \quad (y^i = \dot{x}^i),$$

where $a_{hijk}(x)$ are components of a symmetric tensor field of (0, 4)-type, depending on the position x alone, and a Finsler space with a quartic metric is called the *quartic Finsler space*.

We have had few papers studying quartic Finsler spaces ([3], [11], [12], [13]) although there are various papers on the geometry of spaces with a quartic metric as a generalization of the Euclidean or Riemannian geometry. The purpose of the present paper is to study spaces with a quartic metric from the standpoint of Finsler geometry.

The first section is devoted to developing a fundamental treatment of quartic Finsler spaces and a characterization of such spaces is given in terms of well-known tensors in Finsler geometry. The second section

Received by the editors on May 19, 1999.

¹⁹⁹¹ Mathematics Subject Classifications: 53B40.

Key words and phrases: Berwald space, Cartan connection, Finsler connection, C-reducible, Landsberg space, quartic Finsler space..

is devoted to finding Berwald spaces and Landsberg spaces among quartic Finsler spaces. In the third section a characteristic Finsler connection is defined in a quartic Finsler space from the standpoint of the generalized metric space due to A. Moór.

1. Characterization of quartic metrics

We consider an *n*-dimensional Finsler space F^n with a quartic metric L(x, y) defined by (0.1). Putting

(1.1)
$$La_{ijk}(x,y) = a_{ijkr}y^r, \quad L^2a_{ij}(x,y) = a_{ijrs}y^ry^s, L^3a_i(x,y) = a_{irst}y^ry^sy^t,$$

the normalized supporting element $l_i = \dot{\partial}_i L$, the angular metric tensor $h_{ij} = L\dot{\partial}_i\dot{\partial}_j L$ and the fundamental tensor $g_{ij} = \dot{\partial}_i\dot{\partial}_j L^2/2 = h_{ij} + l_i l_j$ are respectively given by the equations

(1.2) a)
$$l_i = a_i$$
, b) $h_{ij} = 3(a_{ij} - a_i a_j)$, c) $g_{ij} = 3a_{ij} - 2a_i a_j$.

The problem appearing first in treating special Finsler metrics of an interesting concrete form is to find the inverse metric (g^{ij}) of the metric (g_{ij}) . In case of a quartic metric the problem is easy as follows:

DEFINITION. A quartic Finsler space or some domain of the space is called *regular*, if the intrinsic metric tensor $a_{ij}(x, y)$ has non-vanishing determinant.

Then, by the inverse matrix (a^{ij}) of (a_{ij}) the contravariant components g^{ij} of the fundamental tensor are written as $g^{ij} = [a^{ij} + 2a^ia^j/(3-2a^2)]/3$, as it is easily verified ([5]), where $a^i = a^{ir}a_r$ and $a^2 = a^ia_i$. It follows from this and (1.2)a) that $l^i = y^i/L = a^i/(3-2a^2)$ and $l^il_i = 1 = a^2/(3-2a^2)$. Thus $a^2 = 1$ is derived, so g^{ij} are of the following simple form:

(1.3)
$$g^{ij} = (a^{ij} + 2a^i a^j)/3.$$

As a consequence, in a regular Finsler space with a quartic metric, the usual processes of raising and lowering of indices are introduced.

Let us return to our subject. It is easy to show

$$\dot{\partial}_j a_i = 3(a_{ij} - a_i a_j)/L, \quad \dot{\partial}_k a_{ij} = 2(a_{ijk} - a_{ij} a_k)/L.$$

Therefore it follows from (1.2)c) that the covariant components $C_{ijk} = \dot{\partial}_k g_{ij}/2$ of the (h)hv-torsion tensor of the Cartan connection $C\Gamma$ are written as

$$(1.4) LC_{ijk} = 3(a_{ijk} - a_{ij}a_k - a_{jk}a_i - a_{ki}a_j + 2a_ia_ja_k).$$

It is well-known that a Finsler space is Riemannian, iff $C_{ijk}=0$. This characterization of Riemannian metric is nothing but the equation $\dot{\partial}_i\dot{\partial}_j\dot{\partial}_kL^2=0$. A cubic metric L(x,y) is characterized by the equation $\dot{\partial}_h\dot{\partial}_i\dot{\partial}_j\dot{\partial}_kL^3=0$. Similarly a quartic metric L(x,y) is characterized by the equation $\dot{\partial}_l\dot{\partial}_h\dot{\partial}_i\dot{\partial}_j\dot{\partial}_kL^4=0$. Making use of the well-known T-tensor T_{hijk} , we get generally

(1.5)
$$\dot{\partial}_{h}\dot{\partial}_{i}\dot{\partial}_{j}\dot{\partial}_{k}\dot{\partial}_{l}L^{4} = 16T_{hijkl} + 8\{l_{h}T_{ijkl} + (5)\}$$

$$+ 8\{LC_{h}{}^{r}{}_{i}T_{rjkl} + 2C_{hij}h_{kl} + (10)\},$$

where by the abbreviation $\{\cdots + (\cdots)\}$ we denote the cyclic permutation of indices and summation such that $\{\cdots + (\cdots)\}$ becomes completely symmetric in all the indices.

Consequently the characterization theorem of quartic metric is established as follows:

THEOREM 1. A Finsler space is one with a quartic metric, if and only if the equation

$$2T_{hijkl} + \{l_h T_{ijkl} + (5)\} + \{LC_h{}^r{}_i T_{rjkl} + 2C_{hij} h_{kl} + (10)\} = 0$$

holds identically.

REMARK. The importance of the T-tensor has been recently noticed ([2]). It seems that the study of the T-tensor must be further promoted on account of Theorem 1.

REMARK. It is noteworthy that the rather complicated equation in Theorem 1 means the simple differential equation $\dot{\partial}_h \dot{\partial}_i \dot{\partial}_j \dot{\partial}_k \dot{\partial}_l L^4 = 0$ for the fundamental function L(x,y), similarly to $C_{ijk} = \dot{\partial}_i \dot{\partial}_j \dot{\partial}_k L^2/2$ in Riemannian case. In connection with this fact, we recall the characteristic equation

(1.6)
$$C_{ijk} = (h_{ij}C_k + h_{jk}C_i + h_{ki}C_j)/(n+1)$$

for a *C-reducible Finsler space*; it is written in tensors derived from L(x,y) by the differentiation with respect to y^i alone, i.e., $h_{ij} = L\dot{\partial}_i\dot{\partial}_j L$ and $C_i = \dot{\partial}_i(\log\sqrt{g})$. It seems to us that (1.6) is apparently simpler than the equation in Theorem 1, but only two particular solutions $L = \alpha + \beta$ (Randers metric) and $\alpha^2\beta$ (Kropina metric) are known in this stage ([5]).

2. Certain important tensors of quartic Finsler spaces

It follows first from (1.3) and (1.4) that the components $C_j{}^i{}_k$ of the (h)hv-torsion tensor of $C\Gamma$ are given by

(2.1)
$$LC_j{}^i{}_k = a_j{}^i{}_k - \delta_j^i a_k - \delta_k^i a_j + a^i (2a_j a_k - a_{jk}),$$

where we put $a_j{}^i{}_k = a^{ir}a_{jrk}$. Hence the so-called torsion vector C_i is given by

$$(2.2) LC_i = a_i{}^r{}_r - na_i.$$

From (2.1) the v-curvature tensor S_{hijk} of $C\Gamma$ is written in the form

(2.3)
$$\frac{1}{3}L^{2}S_{hijk} = a_{i}{}^{r}{}_{j}a_{rhk} - a_{i}{}^{r}{}_{k}a_{rhj} - (a_{ij}a_{hk} - a_{ik}a_{hj}) + (a_{ij}a_{h}a_{k} + a_{hk}a_{i}a_{j} - a_{ik}a_{h}a_{j} - a_{hj}a_{i}a_{k}).$$

Next, the h- and v-covariant derivatives $X_{i|j}$, $X_i|_j$ of a covariant vector field X_i with respect to the Cartan connection $C\Gamma$ are defined by

$$X_{i|j} = \partial_j X_i - \dot{\partial}_r X_i N^r{}_j - X_r F_i{}^r{}_j,$$

$$X_i|_j = \dot{\partial}_j X_i - X_r C_i{}^r{}_j,$$

where $(F_j{}^i{}_k, N^i{}_j (=F_0{}^i{}_j), C_j{}^r{}_k)$ are connection coefficients of $C\Gamma$ and suffix 0 means the contraction by the supporting element y^i .

As to a Finsler space with a quartic metric (0,1), it follows first from (1.2) a), c) that

$$(2.4) a_{i|j} = 0, a_{ij|k} = 0,$$

because of $l_{i|j} = 0$ and $g_{ij|k} = 0$. These are remarkable identities, as it will be seen in the following. Then the h-covariant differentiation of (1.4) leads us to the simple equation

$$(2.5) LC_{ijk|l} = 3a_{ijk|l}.$$

Therefore the (v)hv-torsion tensor P_{ijk} given by ([8], 17.23) is written as

$$(2.6) LP_{ijk} = LC_{ijk|0} = 3a_{ijk|0}.$$

As a consequence of these equations, the equation ([8], 17.23) expressing the hv-curvature tensor P_{hijk} yields

(2.7)
$$\frac{1}{3}L^{2}P_{hijk} = L(a_{ijk|h} - a_{hjk|i}) - (a_{i}^{r}{}_{j}a_{rhk|0} - a_{h}^{r}{}_{j}a_{rik|0}) + (a_{i}a_{hjk|0} - a_{h}a_{ijk|0}).$$

DEFINITION. (1) A Finsler space is called a *Berwald space* (or affinely connected space), if the tensor $C_{ijk|l}$ vanishes identically.

(2) A Finsler space is called a *Landsberg space*, if the (0)hv-torsion tensor P_{ijk} vanishes identically.

It is noted that the condition $P_{ijk} = 0$ is equivalent to $P_{hijk} = 0$. From (2.5) and (2.6) we obtain immediately THEOREM 2. A quartic Finsler space is a Berwald space (resp. Landsberg space), if and only if the tensor $a_{ijk|l}$ (resp. $a_{ijk|0}$) vanishes identically, where the h-covariant differentiation is the one with respect to the Cartan connection.

3. A characteristic Finsler connection in a quartic Finsler space

First of all we remember equation c) in (1.2) giving the fundamental tensor g_{ij} of a quartic Finsler space F^n . The tensor is different from the intrinsic metric tensor a_{ij} in a regular F^n . Nevertheless we have

(3.1)
$$L^{2}(x,y) = g_{ij}(x,y)y^{i}y^{j} = a_{ij}(x,y)y^{i}y^{i}.$$

This is a very interesting equation; F^n is regarded as a generalized metric space of line-element in Moór's sense [10], because there is generally no such a function M(x, y) that a_{ij} is given by $a_{ij} = \dot{\partial}_i \dot{\partial}_j M^2/2$. A. Moór has developed various interesting results on the geometry of generalized metric space of line-element.

In viewpoint of (3.1) it seems natural to us to consider the problem determining a Finsler connection based on the intrinsic metric tensor $a_{ij}(x,y)$.

THEOREM 3. In a regular quartic Finsler space F^n a Finsler connection ${}^*C\Gamma = ({}^*F_j{}^i{}_k, {}^*N^i{}_j, {}^*C_j{}^i{}_k)$ is uniquely determined from the intrinsic metric tensor $a_{ij}(x, y)$ by the following five axioms:

- (1) It is h-metrical: $a_{ij|k}^* = 0$.
- (2) It is v-metrical: $a_{ij}|_{k}^{*} = 0$.
- (3) It is h-symmetric: ${}^*T_j{}^i{}_k = {}^*F_j{}^i{}_k {}^*F_k{}^i{}_j = 0$.
- (4) It is v-symmetric: ${}^*S_j{}^i{}_k = {}^*C_j{}^i{}_k {}^*C_k{}^i{}_j = 0$.
- (5) Its deflection tensor vanishes: $y_{ij}^{i*} = N_{j}^{i} F_{0j}^{i} = 0$,

where $_{|}^{*}$ and $_{|}^{*}$ denote respectively the h- and v-covariant differentiations with respect to ${}^{*}C\Gamma$. Then the connection coefficients ${}^{*}F_{j}{}^{i}{}_{k}$

and ${}^*N^i{}_j$ coincide with $F_j{}^i{}_k$ and $N^i{}_j$ respectively and ${}^*C_j{}^i{}_k = C_j{}^i{}_k + l^ih_{jk}/(2L)$, where $C\Gamma = (F_j{}^i{}_k, N^i{}_j, C_j{}^i{}_k)$ is the Cartan connection.

REMARK. In Theorem 3 a Finsler connection is the concept given in [8 §9]. It is noteworthy that the above system of axioms is similar to the one for $C\Gamma$. The proof will be done also similar to the case of $C\Gamma$. It is, $\dot{\partial}_k g_{ij} = \dot{\partial}_j g_{ik}$ are full used, but for the intrinsic metric tensor a_{ij} such identities do not hold except $(\dot{\partial}_k a_{ij})y^k = 0$. We shall show another proof in the following.

Proof. The axioms (2) and (4) lead us immediately to

(3.2)
$${^*C_j}^i{}_k = a^{ir}(\dot{\partial}_k a_{jr} + \dot{\partial}_j a_{kr} - \dot{\partial}_r a_{jk})/2,$$

that is, the coefficients ${}^*C_j{}^i{}_k$ of the v-covariant differentiation are Christoffel symbols constructed from $a_{ij}(x,y)$ with respect to y^i . Substitution of (1.4) in $\dot{\partial}_k a_{ij} = 2(a_{ijk} - a_{ij}a_k)/L$ yields

(3.3)
$$\dot{\partial}_k a_{ij} = \frac{2}{3} \{ C_{ijk} + (h_{jk}l_i + h_{ki}l_j)/L \}.$$

Thus (3.2) and (3.3) give the relation

(3.4)
$${}^*C_j{}^i{}_k = C_j{}^i{}_k + \frac{2}{3L}h_{jk}l^i.$$

Secondly we consider the difference $D_j{}^i{}_k = {}^*F_j{}^i{}_k - F_j{}^i{}_k$. Then the axiom (3) means $D_j{}^i{}_k = D_k{}^i{}_j$ and (5) does $D_0{}^i{}_k = {}^*N^i{}_k - N^i{}_k$. Pay attention to the remarkable equation, the second of (2.4); in virtue of it the axiom (1) is written in the simple form

(3.5)
$$(\dot{\partial}_r a_{ij}) D_0^r{}_k + D_{ijk} + D_{jik} = 0,$$

where $D_{ijk} = a_{jr}D_i{}^r{}_k$. By the Christoffel process ([8], p.44) and (3.3) we derive from (3.5)

$$(3.6) D_{ijk} + C_i{}^r{}_j D_{0rk} + C_j{}^r{}_k D_{0ri} - C_k{}^r{}_i D_{0rj}$$

$$+ \frac{1}{L} \left[l_i (D_{0jk} - D_{0kj}) + l_k (D_{0ji} - D_{0ij}) + l_j (D_{0ik} + D_{0ki}) \right]$$

$$- \frac{2}{L^2} (l_i l_j D_{00k} + l_j l_k D_{00i} - l_k l_i D_{00j}) = 0.$$

Contraction of (3.6) by y^i yields

(3.7)
$$D_{0jk} + C_j^r{}_k D_{0r0} - \frac{2}{L^2} l_j l_k D_{000} + (D_{0jk} - D_{0kj}) + \frac{1}{L} \{ l_j (D_{0k0} - D_{00k}) + l_k (D_{0j0} + D_{00j}) \} = 0.$$

 $D_{0j0} = 0$ is easily obtained by contraction of (3.7) by y^k , hence (4.7) is reduced to

(3.8)
$$D_{0jk} + (D_{0jk} - D_{0kj}) - \frac{1}{L}(l_j D_{00k} - l_k D_{00j}) = 0.$$

Further contraction of the above by y^j gives $D_{00k} = 0$ and we have $D_{0jk} = 0$ easily. Consequently (3.6) yields the conclusion $D_{ijk} = 0$.

REMARK. The concept of indicatrization is recently introduced ([8], Definition 31.3). It is easily verified by (3.4) that $C_j{}^i{}_k$ is the indicatrized tensor of ${}^*C_j{}^i{}_k$.

REFERENCES

- 1. M. Hashiguchi, S. Hōjō and M. Matsumoto, On Landsberg spaces of two dimensions with (α, β) -metric, J. Korean Math. Soc., 10 (1973), 17–26.
- 2. H. Kawaguchi, On Finsler spaces with the vanishing second curvature tensor, Tensor, N. S., 26 (1972), 250-254.
- 3. V. K. Kropina, Projective two-dimensional Finsler spaces with special metric, (Russian), Trudy Sem. Vektor. Tenzor. Anal., 11 (1961), 277–292.
- 4. M. Matsumoto, V-transformations of Finsler spaces I. Definition, infinitesimal transformations and isometries, J. Math. Kyoto Univ., 12 (1972), 479–512.
- 5. M. Matsumoto, On C-reducible Finsler spaces, Tensor, N. S., 24 (1972), 29–37.
- 6. M. Matsumoto, A theory of three-dimensional Finsler spaces in terms of scalars, Demonst. Math., 6 (1973), 223-251.
- M. Matsumoto, Strongly non-Riemannian Finsler spaces, Analele Univ. din Iasi, 23 (1971), 141–149.
- 8. M. Matsumoto, Foundation of Finsler geometry and special Finsler spaces, Kaiseisha Press, Saikawa, Otsu, Japan, 1986.
- 9. M. Matsumoto and H. Shimada, On Finsler spaces with 1-form metric II. Berwald-Moór's metric $L=(y^1y^2\cdots y^n)^{\frac{1}{n}}$, Tensor, N. S., **32** (1978), 275–278.

- 10. A. Moór, Entwicklung einer Geometrie der allgemeinen metrischen Linienelementräume, Acta Sci. Math. (Szeged), 17 (1956), 85–120.
- 11. V. V. Wagner, On generalized Berwald spaces, C. R. Dokl. Acad. Sci. URSS, N. S., 39 (1943), 3–5.
- 12. J. M. Wegener, Untersuchung der zwei-und dreidimensionalen Finslerschen Räume mit der Grundform $L = \sqrt[3]{a_{ikl}x'^ix'^kx'^l}$, Akad. Wetensch. Proc., 38 (1935), 949–955.
- 13. J. M. Wegener, Untersuchung über Finslersche Räume, Lotos Prag, 84 (1936), 4–7.

DIVISION OF MATHEMATICAL SCIENCES KYUNGSUNG UNIVERSITY PUSAN 608-736, KOREA

 $E ext{-}mail$: iylee@star.kyungsung.ac.kr

DEPARTMENT OF MATHEMATICS SOONCHUNHYANG UNIVERSITY ASAN 337-880, KOREA