JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 12, August 1999

ON ANTI FUZZY PRIME IDEALS IN BCK-ALGEBRAS

WON KYUN JEONG

ABSTRACT. In this paper, we introduce the notion of anti fuzzy prime ideals in a commutative BCK-algebra and obtain some properties of it.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [10]. Since then these ideas have been applied to other algebraic structures such as semigroups, groups, rings, etc. In 1991, Xi [9] applied the concept of fuzzy sets to BCK-algebras which are introduced by Imai and Iséki [5]. He got some interesting results. In [2], Biswas introduced the concept of anti fuzzy subgroups of groups. Recently, S. M. Hong and Y. B. Jun [4], modifying Biswas' idea, apply the concept to BCK-algebras. So, they defined the notion of anti fuzzy ideals of BCK-algebras and obtained some useful results on it.

In this paper, we introduce the notion of anti fuzzy prime ideals of commutative BCK-algebras. We show that every anti fuzzy prime ideal of a commutative BCK-algebra is an anti fuzzy ideal of X. We also prove that if a fuzzy subset is an anti fuzzy prime ideal of X then so is the fuzzification of its lower level cut.

2. Preliminaries

DEFINITION 2.1. An algebra (X, *, 0) of type (2,0) is called a BCKalgebra if for all $x, y, z \in X$ the following conditions hold:

(a) ((x * y) * (x * z)) * (z * y) = 0

Received by the editors on March 12, 1999. Revised September 29, 1999.

¹⁹⁹¹ Mathematics Subject Classifications : 06F35, 03G25.

Key words and phrases: anti fuzzy ideal, anti fuzzy prime ideal, BCK-algebra.

- (b) (x * (x * y)) * y = 0
- (c) x * x = 0
- (d) 0 * x = 0
- (e) x * y = 0 and y * x = 0 imply x = y.

A BCK-algebra can be (partially) ordered by $x \leq y$ if and only if x * y = 0. This ordering is called BCK-ordering.

PROPOSITION 2.1. In any BCK-algebra X, the following holds: for all $x, y, z \in X$,

(1) x * 0 = x,

(2)
$$(x * y) * z = (x * z) * y$$
,

(3)
$$x * y \leq x$$
,

- (4) $(x * y) * z \le (x * z) * (y * z)$,
- (5) $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$.

A BCK-algebra X satisfying the identity x * (x * y) = y * (y * x) is said to be *commutative*. We denote x * (x * y) by $y \wedge x$. In a commutative BCK-algebra, it is well-known that $x \wedge y$ is the greatest lower bound of x and y.

DEFINITION 2.2. [6] A non-empty subset I of a BCK-algebra X is called an *ideal* of X if

(1) $0 \in I$,

(2) $x * y \in I$ and $y \in I$ imply $x \in I$.

DEFINITION 2.3. [3] Let S be a non-empty set. A fuzzy subset μ of S is a function $S \to [0, 1]$.

DEFINITION 2.4. [3] Let μ be a fuzzy subset of S. Then for $t \in [0, 1]$, the *level subset* of μ is the set $\mu_t = \{x \in S \mid \mu(x) \ge t\}$.

DEFINITION 2.5. [9] Let X be a BCK-algebra. A fuzzy subset μ of X is called a *fuzzy subalgebra* of X if

$$\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$$

16

for all $x, y \in X$.

DEFINITION 2.6. [9] Let X be a BCK-algebras. A fuzzy subset μ of X is called a *fuzzy ideal* of X if, for $x, y \in X$,

- (1) $\mu(0) \ge \mu(x)$,
- (2) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}.$

DEFINITION 2.7. [4] A fuzzy subset μ of a BCK-algebra X is called an *anti fuzzy subalgebra* of X if

$$\mu(x * y) \le \max\{\mu(x), \mu(y)\}$$

for all $x, y \in X$.

PROPOSITION 2.2. [4] Every anti fuzzy subalgebra μ of a BCKalgebra X satisfies $\mu(0) \leq \mu(x)$ for all $x \in X$.

DEFINITION 2.8. [4] A fuzzy subset μ of a BCK-algebra X is called an *anti fuzzy ideal* of X if

(1) $\mu(0) \le \mu(x)$,

(2)
$$\mu(x) \le \max\{\mu(x * y), \mu(y)\},\$$

for all $x, y \in X$.

THEOREM 2.3. [4] Every anti fuzzy ideal μ of a BCK-algebra X is an anti fuzzy subalgebra of X.

REMARK 2.1. An anti fuzzy subalgebra of a BCK-algebra X need not be an anti fuzzy ideal of X, in general.

DEFINITION 2.9. [1] An ideal I of a commutative BCK-algebra X is said to be *prime* if $x \land y \in I$ implies $x \in I$ or $y \in I$.

DEFINITION 2.10. [7] A non-constant fuzzy ideal μ of a commutative BCK-algebra X is said to be *fuzzy prime* if

 $\mu(x \wedge y) \le \max\{\mu(x), \mu(y)\}$

for all $x, y \in X$.

WON KYUN JEONG

THEOREM 2.4. [7] If μ is a fuzzy prime ideal of a commutative BCKalgebra, then the set

$$X_{\mu} = \{ x \in X \mid \mu(x) = \mu(0) \}$$

is a prime ideal of X.

DEFINITION 2.11. [4] Let μ be a fuzzy subset of a BCK-algebra X. Then for $t \in [0, 1]$, the set

$$\mu^t = \{x \in X \mid \mu(x) \le t\}$$

is called the *lower t-level cut* of μ .

Note that $\mu^1 = X$ and $\mu^t \cup \mu_t = X$ for $t \in [0, 1]$. Clearly, $\mu^s \subset \mu^t$ whenever s < t.

THEOREM 2.5. [4] Let μ be a fuzzy subset of a BCK-algebra X. Then μ is an anti fuzzy ideal of X if and only if for each t-level cut μ^t is an ideal of X.

3. Anti fuzzy prime ideals

DEFINITION 3.1. A non-constant anti fuzzy ideal μ of a commutative BCK-algebra X is said to be *anti fuzzy prime* if

$$\mu(x \land y) \ge \min\{\mu(x), \mu(y)\}$$

for all $x, y \in X$.

EXAMPLE 3.1. Let $X = \{0, x, y, z\}$ with the Cayley table as follows:

*	0	x	y	\boldsymbol{z}
0	0	0	0	0
x	x	0	0	0
y	y	x	0	0
z	$oldsymbol{z}^{*}$	y	x	0

It is easy to verify that (X, *, 0) is a commutative BCK-algebra. Define a fuzzy subset $\mu : X \to [0, 1]$ by $\mu(0) = 0, \mu(x) = 0.1, \mu(y) = 0.5$ and $\mu(z) = 1$. Then it is an anti fuzzy prime ideal of X.

18

PROPOSITION 3.1. Every anti fuzzy prime ideal μ of a BCK-algebra X is an anti fuzzy ideal of X.

Proof. It is straightforward.

REMARK 3.1. An anti fuzzy ideal of a commutative BCK-algebra X need not be an anti fuzzy prime ideal of X as shown in the following example.

EXAMPLE 3.2. Let $X = \{0, x, y, z\}$ be a BCK-algebra with Cayley table as follows:

0	x	y	z
0	0	0	0
x	0	0	x
y	x	0	y
z	\boldsymbol{z}	z	0
	0 x	$\begin{array}{ccc} 0 & 0 \\ x & 0 \\ y & x \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Then the BCK-algebra X is commutative. Define $\mu : X \to [0, 1]$ by $\mu(0) = 0, \mu(x) = \mu(y) = 0.5$ and $\mu(z) = 1$. Routine calculations give that μ is an anti fuzzy ideal of X but not anti fuzzy prime ideal of X.

THEOREM 3.2. Let μ be an anti fuzzy prime ideal of a commutative BCK-algebra X. Then the set $X_{\mu} = \{x \in X \mid \mu(x) = \mu(0)\}$ is a prime ideal of X.

Proof. The fact that X_{μ} is an ideal follows from Theorem 2.17. Let $x, y \in X$ be such that $x \wedge y \in X_{\mu}$. Then $\mu(0) = \mu(x \wedge y) \ge \min\{\mu(x), \mu(y)\} = \mu(x)$ or $\mu(y)$. It follows from (1) of Definition 2.10 that either $\mu(0) = \mu(x)$ or $\mu(0) = \mu(y)$. Thus either $x \in X_{\mu}$ or $y \in X_{\mu}$. This completes the proof.

COROLLARY 3.3. If μ is an anti fuzzy prime ideal of a commutative BCK-algebra X, then the set $P = \{x \in X \mid \mu(x) = 0\}$ is either empty or a prime ideal of X.

LEMMA 3.4. Let I be a prime ideal of a commutative BCK-algebra X and let α and β be elements of (0, 1] with $\alpha < \beta$. Then the fuzzy

subset $\mu: X \to [0,1]$ defined by

$$\mu(x) = \begin{cases} \alpha & \text{if } x \in I, \\ \beta & \text{otherwise} \end{cases}$$

is an anti fuzzy ideal of X.

Proof. Since $0 \in I$, we have $\mu(0) = \alpha \leq \mu(x)$ for all $x \in X$. Suppose that there exist $x, y \in X$ such that $\mu(x) > \max\{\mu(x * y), \mu(y)\}$. Then $\mu(x) = \beta$ and $\max\{\mu(x * y), \mu(y)\} = \alpha$. Hence $\mu(x * y) = \alpha$ and $\mu(y) = \alpha$. It follows that $x * y \in I$ and $y \in I$. Since I is an ideal, we have $x \in I$. This is a contradiction, ending the proof. \Box

THEOREM 3.5. Let P be a prime ideal of a commutative BCKalgebra X and let $\alpha \in (0,1]$. If μ is a fuzzy subset in X defined by

$$\mu(x) = \begin{cases} 0 & \text{if } x \in P, \\ \alpha & \text{otherwise,} \end{cases}$$

then μ is an anti fuzzy prime ideal of X.

Proof. By Lemma 3.8, we know that μ is a non-constant anti fuzzy ideal of X. Let $x, y \in X$. Assume that $x \wedge y \in P$. Then either $x \in P$ or $y \in P$. Hence $\mu(x \wedge y) = 0 = \min\{\mu(x), \mu(y)\}$. If $x \wedge y \notin P$, then

$$\mu(x \wedge y) = \alpha \ge \min\{\mu(x), \mu(y)\}.$$

Thus μ is an anti fuzzy prime ideal of X. This completes the proof. \Box

THEOREM 3.6. Let P be an ideal of a commutative BCK-algebra X. Then P is a prime ideal if and only if the complement χ_P^c of the characteristic function is an anti fuzzy prime ideal.

Proof. The necessity is clear. Suppose that $x \wedge y \in P$ and $x \notin P$, for $x, y \in X$. Then

$$0 = \chi_P^c(x \land y) = 1 - \chi_P(x \land y)$$

$$\geq 1 - \max\{\chi_P(x), \chi_P(y)\} = \min\{1 - \chi_P(x), 1 - \chi_P(y)\}$$

$$= \min\{\chi_P^c(x), \chi_P^c(y)\} = \chi_P^c(y).$$

It follows that $\chi_P^c(y) = 0$, so that $\chi_P(y) = 1$. Thus $y \in P$, and hence P is a prime ideal of X. This completes the proof. \Box

References

- J. Ahsan, E. Y. Deeba and A. B. Thaheem, On prime ideals of BCK-algebras, Math. Japon. 36 (1991), 875–882.
- R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Sets and Systems 35 (1990), 121–124.
- P. S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl. 84 (1981), 264-269.
- S. M. Hong and Y. B. Jun, Anti fuzzy ideals in BCK-algebras, Kyungpook Math. J. 38, (1998), 145–150.
- Y. Imai and K. Iséki, On axiom systems of propositional calculi, Proc. Japan Academy 42 (1966), 19–22.
- 6. K. Iséki, On ideals in BCK-algebras, Math. Seminar Notes 3 (1975), 1-12.
- Y. B. Jun, E. H. Roh, J. Meng and X. L. Xin, Fuzzy prime and fuzzy irreducible ideals in BCK-algebras, Soochow J. Math. 21 (1995), 49–56.
- J. Meng and Y. B. Jun, *BCK-algebras*, Kyung Moon Sa Co., Seoul Korea, 1994.
- 9. O. Xi, Fuzzy BCK-algebras, Math. Japon. 36 (1991), 935-942.
- 10. L. A. Zadeh, Fuzzy sets, Inform. Control. 8 (1965), 338-353.

DEPARTMENT OF MATHEMATICS COLLEGE OF NATURAL SCIENCE KYUNGPOOK NATIONAL UNIVERSITY TAEGU 702-701, KOREA