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MQUICK Upwind Scheme for the Incompressible
Navier-Stokes Equations
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1. Introduction

Recently, thanks to the rapid progress of
the available computer ability, the computa-
tional fluid dynamics (CFD) has become vig-
orously used not only as a design tool for mod-
ern flow devices, but as a solver to analyze ac-
curately the practical engineering flow prob-
lems. However, most flow devices and their
flow fields have geometrically complex compu-
tational domains. Furthermore, the majority
of such flow consists of high Reynolds number
flow. To solve these flows by numerical ap-
proach, it is desirable that the available CFD
code has a good efliciency, accuracy and nu-
merical stability, and is suitable for supercom-
puting.
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From these points of view, some efforts
to improve the numerical methods for the
Navier-Stokes equations have been made. For
example, on improvements of finite-difference
scheme associated with fast convergence as
well as high stability for incompressible vis-
cous flows, a series of papers have appeared
in some articles addressing the reduction of
the computing cost and stable computation
at the large Courant (CFL) number(1-3], and
improving the convergence rate of iterative
method by using the multigrid technique(4].

On the other hand, in order to suppress
and overcome the numerical instability come
from non linearity of the convective term in
the Navier-Stokes equation, the upwinding
method for the convection term is widely used.
In the sense that they guarantee the high accu-
racy of the solution from the effect of numeri-
cal diffusion, higher-order upwinding schemes
such as QUICK([5] and the third-order upwind
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scheme are commonly used nowadays in the
CFD community for the incompressible flow.

The QUICK (Quadratic Upstream Interpo-
lations for the Convective Kinematics) scheme
given by Leonard is a second-order accurate
upwind scheme but is very close to the third-
order accurate scheme[6]. That is, because
QUICK scheme employs a three-point up-
wind weighted quadratic interpolation tech-
nique taking the upstream-shifted point with
the sign of the transport speed of the convec-
tion term, it provides accurate results without
extensive grid refinement and retains the basic
stable convective sensitivity property. After
the presence of this QUICK scheme, therefore,
a number of articles[7,8] related to the imple-
mentation and evaluation of the scheme are
appeared, and the application of this scheme
for solving incompressible complex flows has
brought great success in the past decades.

However, in spite of higher-order upwind
scheme in accuracy we often experience that
QUICK scheme leads to unstable solutions
for the practical computation of convection-
dominated problems. As an effective way to
overcome this instability, therefore, some SIM-
PLE users[9-11] have been proposed some new
formulations of this scheme. In their liter-
atures, the weighting coefficients of QUICK
scheme are partly redistributed on both left-
and right-hand sides of systems of linear equa-
tion in the implementation of the SIMPLE al-
gorithm, and they demonstrated the improve-
ment of their stability, although each value
of the coefficients is determined by trial and
error[10,11] with the behavior of the solution
during the iteration procedure.

In this paper, a new MQUICK (modified
QUICK) upwind scheme is proposed. This
schem is developed by the modification of
QUICK scheme in order to improve the sta-
bility and convergence rate, and is formulated
not by the rearrangement of weighting coeffi-
cients for just SIMPLE algorithm, but by ad-
justing the weight of the artificial dissipation
with the general selection parameter o when
QUICK based scheme is given with the fourth-
order artificial dissipation. Also, its validity
and effectiveness are examined by the evalua-
tion of the accuracy, stability and convergence
rate, and the optimal value for the parameter

a is investigated through the error and the
stability analysis by using linear equations.
The benchmark evaluation of the present
MQUICK scheme are performed through some
calculations for incompressible flows such as
two-dimensional (2-D) steady flows in the
square cavity[12] and three-dimensional (3-D)
developing entry flows through a square duct
with 90-degree bend[13-15]. The numerical
method used in this study is an efficient im-
plicit SMAC scheme[15] which has been de-
veloped by authors to solve incompressible
Navier-Stokes equations. In order to satisfy
the continuity condition and to avoid the oc-
currence of spurious errors, a staggered grid is

"applied, and the Poisson equation of pressure

is solved by using the Tschebyscheff SLOR
method which is suitable in supercomputing.

The comparisons of predicted results from
the MQUICK and other high-order upwind
schemes, such as QUICK and the third-order
upwind scheme, with experimental data are
provided. In consequence, it is shown that
the MQUICK scheme is the most stable and
its efficiency is high compared with the other
two upwind schemes.

2. Numerical Method

2.1. Governing Equations

The governing equations of incompressible
viscous flows are the Navier-Stokes equations
and the continuity equation of volume fluxes
JU, in curvilinear coordinates. They can be
written in the conservative forms as[15]

2o+ LI p =0 (€=123) O
_ 90 _ .
D=4 (JU;) =0 (@)
where, 5
0
L(JUs, p) =88§i(JU1Uz; JU;u B, V&
+§er£ + vegij a_&fhjkzky (3)

gij = Jgij, and €z; is the permutation ten-
sor. The Jacobian J and the metrics g;; and
hi; of the transformation from Cartesian co-
ordinates to general curvilinear coordinates

are J = a(z,y, Z)/a(ﬁ,ﬂ,f), gij = V& - ng
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and hi; = Oxx/0& - Oz /OE;, respectively.
And the relation between the physical veloc-
ity u; and the contravariant velocity U; is
U; = (0&i/0x;)u;. Similarly the contravari-
ant vorticity Z; is defined by Z; = (9¢;/0z;)¢;
with physical vorticity ¢;.

2.2. Delta Formed Implicit SMAC
Scheme

Now, Eq.(1) is extend to the implicit SMAC
scheme by applying the delta form approxi-
mate - factorization method[16] and partially
including the viscous term in the left-hand
side. Therefore, the momentum equations of
the present implicit SMAC scheme are writ-
ten as follows, for instance, in regard of JU in
&-direction[15]:

{1 + At(aﬁgU" - V—B—i122i133g)} .

¢ o€
0 n 0. 0-
{1 + At(a—nv —_ I/%h&;%hll)} .
[ R . 9 .
{1 + At(a_CW - ll-a—chzza—chu)}AJU
= RHS? (4)
where,
0 7]
RHS, = _At{(’i—{-(JUiUl) - JUiu - 55—V£
. Op a -
Houge + Vfurég(hijZk)}, (5)
JUT = JUT + AJUY,
aJ .~
JZy = Eeij(—,)?(hijUk) (€=1,2,3),

and Flijzhij /J. Also, by satisfying the conti-
nuity condition D"*1=0 with Eq.(2), we have
the following Poisson equation of pressure ¢.

o, 06 19, .
gg—l(geig@) = th@(JUl) (6)
prti=p"+¢ 0

where the asterisk * denotes the intermediate
time level between time step n and n+1, and
¢ is the pressure increment.

The present implicit SMAC scheme satisfies
a diagonally dominant condition with the first-
order upwind scheme in left-hand side convec-
tion terms and, is in the TVD stable[3]. Also,

this implicit SMAC scheme is suitable for vec-
tor or vector parallel computers as compared
with HSMAC[17] and SIMPLE scheme[18] de-
veloped toward scalar machines.

The momentum equation of Eq.(4) can be
solved by dividing them into three steps, and
each step is the problem solving simultaneous
linear equations with tri-diagonal matrix by
the Gaussian elimination.

3. MQUICK Upwind Scheme

The second-order central-difference is basi-
cally used for the space derivatives. However,
for convection term on the left-hand side of
Eq.(4), the first-order upwind scheme is used
to reduce the computational efforts and to
accelerate the convergence, while the higher-
order upwind scheme is applied to the right-
hand side to get accurate and stable solution
for high Reynolds number flows. Here, a linear
hyperbolic equation is considered to explain a
MQUICK scheme as

Ou + O0f(au) Ou du

ot oz ot "oz
where a(u) = 8f/0u is the propagating speed
of waves or the transport speed of the convec-
tion term. The finite-difference equation of
Eq.(8) can be written for the advective form

=0 (8)

n At 7 ¢ n
upt 4 A_xaie(fH—l/Z = fim12)™t =

At 2 ] n
ul — A—wa,-(l = O)(fix1/2 — fimry2)™ (9)
and for the conservative form
At . 2
u?“ + Z;e(fi+1/2 - fi—l/z’)"Jr1 =
n At 7 ] n
uf = 7z (L= O)svyz = fir2)”  (10)

where 0 < © < 1 and, f is the numerical
flux function. In the case of the second-order
central-difference scheme, the numerical flux
function is taken fi+1/2 = {(u; + uiy1)/2 for
Eq.(9) and fiy172 = aipa/a(ui + uig1)/2 for
the conservative form.

As mentioned above, to overcome the nu-
merical instability in convection-dominated
flow, the upwinding of the convection term is
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considered. In general, upwinding is obtained
by adding the artificial dissipation to the
central-difference scheme. Therefore, when
the fourth-order artificial dissipation is con-
sidered, upwind finite-difference schemes for
Eqgs.(9) and (10) can be derived as followings
for the numerical flux in Eq.(9)

fi+1/2 ={-(1+ a)ui—1 + (c1 + 3a)u;
+ (C] - 3a)u,~+1 - (1 - a)ui+2}/cz (11)
and in Eq.(10)

firrjz = @ip12{—(1+ &)ui—1 + (c1 + 3a)u;
+ (c1 = 3)uit1 — (1~ a)uipa}/ca  (12)

with parameter @ = agsign(a;) in Eq.(11)
and a = agsign(a;+1/2) in Eq.(12). This «
represents a weight of the artificial dissipa-
tion. In QUICK scheme(5], the value ¢;=9,
c2=16 and ap=1 in Egs.(11) and (12) are cho-
sen. On the other hand, the third-order up-
wind scheme takes ¢;=7, co=12 and a¢ = 1.

3.1. MQUICK Schemes and Their
Stability

As previously stated, QUICK scheme pro-
vides accurate results and stable computa-
tions for the moderate-to-high Reynolds num-
ber flows. However, we often experience that
this scheme leads to unstable solutions for
complicated and 3-D unsteady flows. This in-
stability depends on the selection of the mod-
ulus of a in Eqgs.(11) and (12).

To investigate the stability for the previous
upwind scheme, von Neumann method for sta-
bility analysis is used in this paper. Accord-
ing to the von Neumann, the stability condi-
tion requires the modulus of the amplification
factor G to be lower or equal to one, that is,
|G}? < 1 when the amplification factor defined
by G(At, Az, ) = uP*! /u? as the ratio of the
amplitudes u™. In the case of the third-order
upwind scheme, G can be derived as, for ad-
vective formed explicit scheme with @ > 0 and

© =0 in Eq.(9)
c
G=1- -6(00829 —4cosf+3)
—i%(Ssinﬁ — sin 26) (13)

where, C represents CFL number defined by
C=aAt/Az, i=+—1 and 6 denotes the phase

angle. Thus we know that in order to be sta-
ble, this scheme has to take CFL of C' < 0.176.

In the same manner, for QUICK-type
schemes with arbitrary values of weighting pa-
rameter a, we obtain G as

G=1- -a—SC—(C0829 —4cos0+3)
—i—g—(lOSin0 — sin 26) (14)

For a = 1, Eq.(14) corresponds to the G of
QUICK scheme. And its CFL range is 0 <
C < 0.161. On the other hand, for MQUICK
schemes with a # 1, we know that the CFL
range is increased with a, that is, C' < 0.206
ata=2 C <0262ata=4,C <0.28 at
a =5, and so on.

Figure 1 shows characteristics of both the
amplitude |G| and the phase ® for the equa-
tions (13) and (14) at several CFL numbers.
Particularly in these figures, |G| means an er-
ror in the amplitude because this error, usu-
ally called the diffusion or dissipation error, is
defined as the ratio of the computed amplitude
to the exact one. At |G| < 1 the waves of u
in the numerical simulation is damped. Simi-
larly, ®/¢ means the error on the phase of the
solution, called the dispersion error, where ¢
means the exact value of the phase for Eq.(8).

As shown in this figure, MQUICK scheme
with a of 4 is very stable at most CFL num-
ber in comparison with QUICK scheme not
shown here. The computed waves are gradu-
ally damped up to critical CFL and the phase
angle 0, indicating that MQUICK scheme is
generating relatively strong numerical dissipa-
tion at available large CFL. This dissipation
helps the increment of the numerical stabil-
ity. On the other hand, dispersion errors at
large CFL are bigger than one called the lead-
ing error which will become a factor to lead
an oscillation of the waves, while it was con-
firmed that this error was everywhere smaller
than one in QUICK scheme, that is, showed a
lagging error which means the numerical com-
puted waves propagate slower than the physi-
cal waves.

Figure 2 shows an investigation of the na-
ture and frequency spectrum of the amplitude
and a phase for all QUICK based schemes at
CFL=0.5. At this high CFL number, the be-
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Fig.1 Amplitude and phase errors for
MQUICK scheme with a = 4.

havior of |G| for large & is more dynamic than
small ones. The more we take large o over 4 in
MQUICK scheme, the more we have the un-
stable range converted from damping to am-
plification between near 7/2 and 7 in 6. This
example helps determine the optimal value of
a, although the value of CFL in this figure
is beyond the analytical range of the stability
condition for all schemes. And, we can infer
that the optimal value of a for stable compu-
tation will exist between 3 and 5. From this
figure, it shows that QUICK scheme is always
in the most unstable state.

3.2. Accuracy of MQUICK schemes

According to the Taylor expansion, the
truncation error of Eq.(9) which indicates the
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Fig.2 Dissipation and dispersion errors
for CFL=0.5.

accuracy of the resulting spatial discretization
is obtained as following Table 1 at a > 0 for
above upwind schemes. Here we know that all
QUICK based schemes produce the second-
order truncation error but it is clearly much
smaller than that of the second-order central-
difference approximation with the truncation
error leading term of —(a/6)Az?u”. These
schemes are rather close to the third-order
scheme[6]. It is also known that instead of
improvement of the stability for the MQUICK
schemes as seen in Figs.1 and 2, the trunca-
tion error is increased by each —(a/16) A3y’
with the increment of a.

4. Numerical Results

4.1. 1-D Problem of Discontinuity
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Table 1 Truncation error

Scheme | a | e | co |Truncation error
Upwind3rd | 1 | 7 | 12 | —(a/12)Az3u™
QUICK 1|9 ]16|—(a/24)Ac%u”
—(a/16)Az3u""
MQUICK 2 | 916 [—(a/24)Az%u"
~5 —(0a/16)Az3u"”

In order to investigate an aspect related
to the numerical stability for above upwind
schemes, the inviscid Burgers’ equation (8) in
conservative form, that is,

du 8
— + _._(__.
ot Oz 2
for an initial linear distribution is computed
numerically with f in Eq.(10) and their pre-
dictions are compared with exact solution in

Figs.3 and 4. In this study, the initial condi-
tion of 1-D discontinuity is given by

)=0 (15)

1 (1.5 > z)
u(z,0) = { 25—z (25>z>15) (16)
0 (z > 2.5)

The discontinuity to be similar to the shock
in the compressible flow is firstly occurred at
t = 1.0 and z = 2.5, and the exact solution
for this problem is obtained by the following
equation for t < 1.0 and t > 1.0, respectively.

1 (L5+t>2)

u(z,t) = 2'15_“t”” 25>z > 15+1) (17)
0 (z > 2.5)
1 (2+05t>

u(z,t) = { 0 Ez > 2+ 0.533 (18)

Figure 3 shows a comparison of solutions
for Burgers’ equation (15) at CFL=0.262 with
mesh size of Az = 0.005. Here the solid line
represents the exact solution. At ¢ = 0.5 the
solution is still continuous, although velocity
steepening has strongly deformed the initial
linear distribution. At ¢ = 1.0 the discontinu-
ity is present at x = 2.5, so that we can check
for the correct convection velocity. The ex-
istence of oscillations of the wave can be seen

near the velocity discontinuity. And att = 1.5
the discontinuity has reached to z = 2.75 as
Eq.(18). However, in the case of both the
third-order upwind and QUICK schemes, the
amplitude of the errors appeared before the
discontinuity increases continuously with time
as compared with MQUICK schemes. The
velocity distributions obtained by MQUICK
schemes show almost the same pattern in this
CFL number.

Another comparison at high CFL number
of 0.5 is shown in Fig.4. In this case, the so-
lution obtained by QUICK scheme in Fig.4(b)
is near the diverging state at ¢ = 1.0, and
after ¢ = 1.5 this scheme is completely de-
stroyed. Also, at large a of 5 in Fig.4(d), the
computation becomes unstable from the be-
ginning of the computation, and then, the so-
lution has been diverged before ¢t = 1.0. How-
ever, it is shown that the MQUICK scheme
with a = 4 is still solvable this discontinu-
ity problem. According to the investigation in
the present work, MQUICK scheme at a = 4
is the most stable. As can be seen in Fig.4(c)
the MQUICK scheme resolves the discontinu-
ity with no more than three spatial points and
it has been convected correctly.

4.2. Flow in a Square Cavity

Numerical simulations for a 2-D steady in-
compressible flow in the square cavity is per-
formed by using the present implicit SMAC
scheme with QUICK, MQUICK and the first-
order upwind schemes. And then, the validity
of MQUICK scheme in convergence, efficiency
and stability is discussed through some sets of
numerical results.

The computational geometry of the cavity
flow is the same as that of Ghia, et al.[12].
No-slip boundary condition together with the
Neumann condition for the pressure was im-
posed on the solid wall boundary. Also, the
driven velocity on the driven wall of the cavity
was prescribed. The weighting parameter ag
of 4 in Eq.(12) was used for an application of
MQUICK scheme. Computations are started
with both velocities and pressure free condi-
tion except the lid driven velocity at Reynolds
number (Re) of 3200, where Re is based on the
cavity height and driven velocity with 81x81
grid points.
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Fig.3 Solutions of Burgers’ equation for an initial linear distribution at CFL=0.262:
(a) third-order upwind scheme, (b) QUICK scheme, (c) MQUICK with o = 4 and
(d) MQUICK with a = 5.
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Fig.4 Solutions of Burgers’ equation for an initial linear distribution at CFL=0.5:
(a) third-order upwind scheme, (b) QUICK scheme, (c) MQUICK with a =4 and

(d) MQUICK with a = 5.
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Firstly, to investigate the numerical sta-
bility and convergence rate, Fig.5 is shown
iteration histories of the norm of diver-
gence and pressure residual defined re-
spectively as, (Norm of Divergence)? =
(1/N) z:(D”)2 and (Norm of p Residual)? =

ik
(1/N)Z(p"+1 —p™)2, where N is the total
ijk
number of grid points, and 4, j and k represent
the index for each direction of the &, n and (,
respectively.

According to the present investigation, at
the relatively low CFL number, for example,
around 1, it showed that the convergence rate
of all upwind schemes was in almost same de-
gree. In the case of high CFL number in Fig.5,
however, the MQUICK scheme was more pre-
dominant than that of QUICK and the third-
order upwind scheme at CFL=40 which is
the maximum CFL number of QUICK scheme
for the present test case. It endorses the
fact investigated previously in the sections
3.1 and 4.1. Particularly around 3000 itera-
tions in Fig.5, the curve of the norm of diver-
gence for MQUICK scheme is almost reached
to the steady state with high accuracy. To
obtain such accuracy with QUICK and the
third-order upwind schemes, it requires about
6000 iterations. In the comparison of veloc-
ity profiles with those of Ghia et al.[12] which
are well-resolved predictions by using a refine
mesh with 129x129 grid points, they were in
accord quite well with each other.

4.3. Flow through a Square Duct

with 90-degree Bend

Another numerical example considered in
this study is a developing entry flow through
a 3-D square duct with 90-degree bend. The
computational geometry is the same as that of
Taylor et al.[13]. 107 x 41 x 41 grid points are
used and Re of 790. Detailed computational
conditions are referred to Ref.[15].

The effectiveness for applying the MQUICK
scheme is more remarkable for the 3-D compu-
tational case given in Fig.6. With the third-
order upwind and QUICK scheme the norms
are still in the range of order of 1075 after
6000 iterations and they are somewhat un-
stable. With MQUICK scheme with o = 4,

however, rapid convergence rate is obtained,
indicating the effectiveness for applying the
MQUICK scheme for this 3-D case.

Figure 7 shows some comparisons of stream-
wise velocity (U) profiles along the spanwise
(Y) and radial (Z) direction with experi-
ments[13] at two streamwise locations. Here,
@ denotes the degree from starting point of the
bend and Xz means the downstream distance
from the end of the bend. Up represents the
inlet mean velocity. The agreement between
predictions and measurements is quite good
at most locations. The discrepancy between
results obtained by MQUICK scheme and the
others is very small, that is, their accuracy
is in the almost same state in this numeri-
cal example. Consequently, it is shown that
MQUICK scheme is more efficient than the
others without the loss of accuracy due to the
additional damping.

5. Conclusions

A new MQUICK upwind scheme was devel-
oped by the modification of QUICK scheme in
order to improve the stability and convergence
rate, and is formulated by using the selection
parameter a which adjusts the weight of the
artificial dissipation in QUICK based schemes.
The verification in validity and effectiveness
for MQUICK schemes was made by the sta-
bility and the error analysis for linear equa-
tions with exact solutions. And, they were
confirmed by the computation of the inviscid
Burgers’ equation for an 1-D problem with an
initial linear distribution, and the incompress-
ible Navier-Stokes equations for a laminar 2-D
lid driven square cavity flow and a 3-D 90-
degree bend flow with square cross-section.

Accurate predictions of complex flow char-
acteristics were successfully shown by using
the implicit SMAC scheme and the MQUICK
scheme with a of 4. A good agreement of the
present results with exact solutions and exper-
iments was obtained. In the comparison for
the accuracy, stability and convergence rate
with QUICK scheme and the third-order up-
wind scheme, it was shown that the MQUICK
scheme is the most efficient one. And it was
investigated through the analysis mentioned
above that the optimal value of the selection
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Fig.5 Iteration history of (a) norm of

divergence and (b) pressure residual
for 2-D cavity flow computation at
CFL=40.

Fig.6 Iteration history of (a) norm of

divergence and (b) pressure residual
for 3-D curved square duct flow
computation.



A4d A135.1999.6 MQUICK Upwind Scheme for the Inc - N-S Equations

51

0.9

0.7

0.5

0.5
0.4

03

os| ! o
H Hed
[+ 3 SPPOPS POV R .........
o
5 03} : : o } Z2=0.1
02 - ........... oo §
0.1 i .
0 ' 1 o 2 0 N 2
UjU, UlU,
= 77.5° Xy =025

Fig.7 Comparison of streamwise velocity profiles: - - - -, 3rd upwind; — - - , QUICK;
-— , MQUICK; (O, measurements.



52 HREL - H/hak B

r>,
Ho

AR T3 A

parameter o exists between 3 and 4 in the

MQUICK scheme.
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