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Developing and Comparing Site Index Curves Using Polymorphic
and Anamorphic Equations for Douglas-fir’
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ABSTRACT

This research describes the construction of a site index equation and curves for Douglas-fir plantation
(Pseudotsuga menziesii Mirb. Franco) in Nelson, New Zealand. The data sets of 146 Permanent Sample
Plots (PSP) were used to build the model, and it was developed using the difference equation method.
Parameter estimates were obtained using the non-linear routine of the SAS, PROC NLIN procedure.
Of the models tested, a variant of the Schumacher polymorphic vield function showed the higher
precision of fitting. About 95% of the observations used to fit the model could be predicted within *
1.2 m of the actual values. Therefore, polymorphic family of site index curves, which reflect different
shapes for the different site index classes, were derived from the Schumacher equation. It was found
that the polymorphic site index equation was more accurate than the anamorphic equation in this study.
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model
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INTRODUCTION position, relatively stable under varying thinning
intensities, and strongly correlated with volume.

The most frequently used representation of site
productivity is site index, which is the expected
top height at a specified index age (Avery and
Burkhart, 1994). Theoretically height growth is
sensitive to differences in site quality, slightly
affected by varying density levels and species com—
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For the species, of which height growth is sig-
nificantly influenced by stand density variation,
estimation of site quality from stand height data
will provide poor results unless the effect of stand
density is taken into account. Fortunately, for

many important plantation species, height growth
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is rarely affected by variation in stand density
(Assmann, 1970; Lanner, 1985). Consequently site
quality estimation procedures based on stand height
information are the most commonly used techniques
for evaluating site productivity.

Site index curves can be classified into three
types : 1) anamorphic curves; 2) polymorphic-dis-
joint curves; and 3) polymorphic-nondisjoint curves
according to the nature of the height/age curve
families they generate (Clutter ef al., 1983; Bor-
ders et al., 1984). Anamorphic curves have the
shape parameter (8) eliminated, constraining the
resultant curves to have similar shape, but with
different asymptote parameters (e ). Thus, for
any two curves in an anamorphic family, the
height of one curve at any age is a constant pro-
portion of the height of the other curve at the
same age. Polymorphic equations have the shape
parameter (8) which allows each curve the free-
dom to change in shape, while asymptote parame-
ters (@) may or may not vary over the curves in
the family (Rennolls, 1995). Hence, there is no
constant proportionality like in anamorphic curves,
but the curves do not cross each other within the
age of interest in a polymorphic-disjoint family
curve., While in polymorphic-nondisjoint family
curves, one curve can cross the other within the
range of interest.

. The major weakness of anamorphic curves is
the assumption of a common shape for all site
classes. For some species, the height curve shape
varies with site quality. Higher quality lands
generally exhibit more pronounced sigmoid shapes
and lower quality lands produce flatter height
growth pattems. Polymorphic families of site index
curves produce differing shapes for different site
index classes (Avery and Burkhart, 1994). Thus,
polymorphic curves generally reflect height growth
trends across a wide range of site qualities more
accurately than anamorphic curves.

The aims of this study, therefore, were 1) to
construct site index curves for Douglas-fir using
the difference equation method, and 2) to review
that developing a site index equation using the
polymorphic form is more logical than that using
the anamorphic form.

MATERIAL AND METHODS

In order to derive a site index equation and
curves for Douglas-fir grown in the Nelson region
of New Zealand, data were used from 146 perma-
nent sample plots, which are maintained by New
Zealand Forest Research Institute. Plot sizes
ranged from (.01 to 0.2 hectare with a mean of
0.05 hectare. Mean age of trees was 27 years,
while minimum and maximum ages were 8 and
60 vyears, respectively., A summary of relevant
plot statistics is given in Table 1.

Table 1. A summary of permanent sample plots
data

Mean Min. Max.

Age (years) 27 8 60

Top height (m) 22.9 5.6 45.7
Stocking (n/ha) 935 93 3533
Basal area(m’/ha)  41.2 2.3 115.3

Variables

The method used for deriving the site index
equation was the difference equation (Borders ef
al., 1984), which has been widely used for growth
and yield modeling studies. The difference equation
method for determining site index usually requires
permanent sample plots or stem analysis data.
The procedure of formulating a difference equation
is flexible and can be used with height and age
equations to produce anamorphic and polymorphic
family curves (Clutter ef al., 1983). For example,
height Hy at age T: is expressed as a function
of Ty, height H, at age T, and T;. A procedure
of developing the difference equation is shown
below using the Schumacher log reciprocal function
(Clutter et al., 1983).

A modified Schumacher height equation is given
as -

InH)=e +B3/T7 o))

where,
H=height in meters
T=age in years
e, B and 7y =coefficients to be estimated.

The heights are given by equations (2) and (3)
at time T) and Ty :
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InH)=a+3/T/ )
In(H)=a+ 8/T>" 3

Making the subject in equations (2) and (3),
and equating the two resultant equations leads to
equation (4) :

Ty (In(Hp)~ 2)=T," (In(H)— ) @

Solving this equation for In(Hz) gives equation
G5):
Ty

() =In(H) ™ +a(1- () ©)

2

Taking the exponent of equation (5) gives equa-
tion (6) :
I

Y ep(a(l- (257 ®

2

(
H,=H,

When T in equation (6) is set equal to an index
age (e.g. 40 years for Douglas-fir and 20 years
for radiata pine in New Zealand), then H; will
be an explicit definition of site index.

The main standard analytical procedures used in
this study were non-linear least-squares regression
based on PROC NLIN in SAS. Analysis of re-
sidual pattemns, through PROC UNIVARIATE
was used to confirm the goodness of fit equations.
When regressions were fitted to data in this study :

1) the dependent and independent variables con-

formed to biologically and mathematically
realistic relationships;

2) the functions used were of an appropriate form

to represent the intended relationship; and

3) a good fit was produced without bias in the
regression coefficients;

as Temu (1992) and Liu Xu (1990) described in
their growth and yield studies.

Various sigmoid functions were fitted to the
data set using PROC NLIN (SAS Inc, 1990) and
the derivative-free algorithmic methods for non-
linear least-squares (Ralston and Jennrich, 1979).
The general functional forms of equations used
are presented in Table 2. In the table the term
"exp" represents exponential functions.

In order to determine the best model, candidate
models were assessed by seeking a minimum
mean square error, as well as observing the plot
of residuals. Also, the following aspects were
considered :

1) the residual patterns should have no bias;

2) the regression coefficient estimates of the 95
% confidence interval should have the same
sign;

3) the average mean of residual and skewness
should be close to 0, and kurtosis should lie
between 2 and + oo;

4) extreme values of residuals between positive
and negative values should be similar.

The above tests, therefore, were used together,

not just on their own, to avoid biased results and
provide good fits to the equations.

RESULTS AND DISCUSSION

Firstly, several polymorphic models were assayed
such as the log-reciprocal equation (Schumacher,
1939; Woollons and wood, 1992), Chapman-Rich-
ards (Pienaar and Tunbull, 1973; Goulding, 1979),

Table 2. General form of projection equations applied to data

Equation name

Equation Forms

Schumacher polymorphic
Chapman-Richards polymorphic
Gompertz polymorphic

Weibull polymorphic
Schumacher anamorphic
Hossfeld anamorphic
Chapman-Richards Anamorphic
Gompertz anamorphic

Hy=exp(In(H) (T1/T* + a (1-(T1/TD")

Ho=(a /7)™ (1-0-(r / 2 )H" ) exp(-7 (1= B) (To-Ty)) V4-4)
Hy=exp(In(Hy) exp(- B(T=T)+ 7 (T-T) @ +(1-exp(- B(T=T)+ ¥ (TA-TH)))
Hz=H, exp(-8(T2"-T\" N+ a(l-exp(- B(T,"-T\" )

Hy=H) exp(-8(1/T1"-1/T2"))

Ho=1/((1/H)+ B(L/T2"-1/Ti"))

Hy=H((1-exp(- 8 T2) / (1-exp(- 3 TD))’

Hz=H; exp(- 8 (exp(r To)-exp(r T1)))
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Table 3. Coefficients for general polymorphic equations fitted to data

Model Name Coefficients MSE
Schumacher polymorphic 5.3076 0.4476 - 0.489
Chapman-Richards polymorphic 0.6207 0.3710 0.0484 0.500
Gompertz Polymorphic 4.121 0.0547 0.0003 0.497
Weibull polymorphic 115.94 0.0287 0.0183 0.493

Gompertz (Whyte and Woollons, 1990) and Weibull
(Yang ef al., 1978; Goulding and Shirley, 1979).
The fitted coefficients and mean square error are
shown in Table 3.

Most of the polymorphic equations generally fit-
ted well without bias in residuals pattern. Com-
paring residuals pattern and mean square error
values the Schumacher polymorphic equation (7),
was found to represent the best fit (Table 3).

Hy=exp(In(Hy) (T1/T2)* + « (1~(T\/T2)?)) @)

This equation contained desirable functions com-
monly used in growth and yield models, such as
compatibility, consistency; and path-invariance
(Clutter et al., 1983). As T approaches infinitely,
H: approaches the upper asymptote, when T,
equals T3 then H; equals H; (consistency property),
and the projection from T, to T3 yields the same
result as the projection from T, to T followed by
projection from T: to T (path-invariance property).

A plot of residual values against predicted val-
ues is given in Figure 1; the data were evidently
well balanced, with no apparent bias or systematic
pattemns and showed well goodness of fit. PROC
UNIVARIATE in SAS showed that residual
statistics were satisfactory as it contained (.31
value for skewness and 1.94 value for kurtosis.

@l

PRED

Fig. 1. A plot of residuals against the predicted
for Schumacher polymorphic height equation

A Shapiro-Wilk test for normality was totally
accepted (0.96). The equation gave a maximum
residual of 2.6 m, a minimum residual of 2.5 m,
a mean residual of 0.026 m and 95% of residuals
lay 1.2 m,

The site index equation (8) can be derived from
top height equation (7) by setting Ho=site index
(S) when T»=40 vears, which is the base age for
Douglas-fir in New Zealand (Burkhart and Tennent,
1977; Mountfort, 1978).

S=exp(In(Hy) (T1/40)* + & 1-(T1/40)")) ®
Where,

a = 5.3076
8= 0.4476

Site index curves can then be generated by rear-
ranging equation (8) and making H; the subject.
Substituting S with any required site index values
(e.g. 20, 30, 40, and 50) results in polymorphic
height growth curves. Figure 3 shows a set of
site index curves resulted from equation (9).

)

®

1
_ S
H,= exp(e (1—(T,/40%)) ]

T

0 10 20 30 4 50 6 70

Stand age (years)

Fig. 2. Site index curves of Douglas-fir derived
from a height equation
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The site index equation, developed previously,
for Douglas-fir grown in the South Island was an
anamorphic form of the equation which was devel-
oped by Temu (1992). Hence, several other fre-
quently used anamorphic equations were also inves-
tigated for a comparative purpose. These were :

Hy=H; exp(- 8(1/T."-1/T2")) (10a)
Hy=H1((1-exp(- B TD)/(1-exp(- 8 T2))" (10L)
Ho=1/((1/HD+ AQ/T:"-1/T\) ) (10c)
Hy=Hexp(- 8 (exp( 7 To)-exp(r T)) (10d)
These equations are Schumacher, Chapman-

Richard, Hossfeld and Gompertz functions, respec-
tively. Equation (10d) showed to be unsuitable
with residuals pattern, while equations (10a) and
(10c) proved inferior to the Chapman-Richard equa-
tion that had the lowest mean square error value.
Hence, the anamorphic form of Chapman-Richards
equation, (10b), was employed as the final site
index equation because this combination produced
the best fit among several anamorphic forms fitted.
The coefficients of the anamorphic equations fitted
are presented in Table 4 with corresponding mean
square values,

Table 4. Coefficients for general anamorphic equa-
tion fitted to data

Model Name Coefficients MSE
Sch;nnaﬂfncgﬁic - 8.8%69 0.3349 0.534
Chzflr:::;}}iﬁards 0.0272 1.4554 0.516
Hoznsfaeéfomhic - 2.2895 1.3053 0.644
GOf;lnD:ggmhiC -1.0077 0.0132 2.128

A plot of residual against predicted values for
equation (10b) shown in Figure 3 fitted well with-
out apparent bias, but slightly less satisfactory
than the residual plot in Figure 1. The mean of
the average residuals and mean absolute values
were (.04 m and 0.54 m, respectively, indicating
that the equation slightly under-estimated tree
height with an average deviation of 0.54 m.

Skewness and kurtosis values were 0.25 and 2.02,
respectively. Equation (10b) was able to contain
all residuals within 2.9 m. This equation had the
maximum residual of 2.9 m and the minimum
residual of 2.5 m, while 95 % of residuals were
belonged to the range of 1.2 m.

When T: in equation (10b) is set equal to the
desired index age, H: is the site index by def-
inition,

S=H,((1-exp(- 8 TD) / (I-exp(- 8 T2)))” (1)

RESID
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Fig. 3. A plot of residuals against the predicted
for Chapman-Richard anamorphic height
equation

The result showed that both the polymorphic
and the anamorphic equations provide estimates of
height growth that were generally acceptable, with
the average error within 0.55 m of the observed
values. Statistics of residuals with the polymorphic
equation were slightly better than those of the
anamorphic equation,

Even though there were no significant differ-
ences in statistics between the anamorphic and
polymorphic equations, the latter was preferred.
The reason for this was that polymorphic curves
generally reflect height growth trends over a
wide range of site qualities more accurately than
anamorphic curves.

CONCLUSIONS

It was clear that both the polymorphic and the
anamorphic models (7) and (10b), provided satis-
factory models of the site index equation for
Douglas-fir, but the polymorphic form, equation
(7), was somewhat superior. This was ensured by
comparing the respective residual mean squares,
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where the polymorphic equation was lower in val-
ue, as well as better residual patterns and residual
statistics. It is unrealistic to expect a unique func-
tion to perform consistently better than others with
forest growth and yield data. However, the initial
selection of appropriate equations is most important
for success of the goodness of fit models. In this
research, the polymorphic equation that reflects
different shapes for the different site index classes
was found to be the best model.
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