The Content-Based Image Retrieval by using Color Histogram and Shape-Based Feature Extraction

컬러 히스토그램과 형상 기반 특징 추출을 이용한 내용 기반 영상 검색

  • Kang, Hyun-Inn (Dept. of Electronics Engineering, Pusan National University) ;
  • Ju, Yong-Wan (Dept. of Electronics Engineering, Pusan National University) ;
  • Baek, Kwang-Ryul (Dept. of Electronics Engineering, Pusan National University)
  • Published : 1999.10.01

Abstract

When we want to retrieve the most similar image from the image database, the color histogram intersection, shape feature and texture feature comparing method are used as a metric to measure the similarity. In order to increase the accuracy of retrievals, we need to integrate two different features. In this paper, the histogram intersection and shape based block histogram intersection method are used. This method results in a high efficient algorithm that meets a similar accuracy and a relatively fast retrieval speed compared to the method of integration of two different features. The Proposed algorithm is tested on retrievals of image database consisting of various 600 images and we implemented that the proposed algorithm gives fast, high efficiency and reliability compared to others.

하나의 질의 영상에 대하여 영상 데이터 베이스로부터 유사도가 높은 영상을 찾고자 할 때에는 유사도의 척도로 컬러 히스토그램 인터섹션법과 형상 특징의 비교법, 질감 특징의 비교법 등이 사용된다. 그리고 앞의 개별 특징 중 2가지 특징을 조합한 방법은 유사도의 산출 결과의 정확도를 높이기 위하여 사용된다. 본 논문에서는 히스토그램 인터섹션법과 형상 특징을 반영하는 블록화된 영역별 히스토그램 인터섹션 법을 사용하여 유사도 높은 영상을 얻는 방법을 제안한다. 이 방법은 서로 다른 2가지 특징을 조합하여 사용한 방법과 비교할 때 비슷한 정확도와 상대적으로 빠른 처리 속도를 달성하는 고효율의 알고리즘이다. 시뮬레이션을 통하여 제안한 알고리즘은 600개로 구성된 다양한 영상의 데이터 베이스 내에서 영상 검색이 수행되고 기존의 다른 알고리즘에 비하여 상대적으로 빠르고 신뢰도가 높은 유사도 척도임을 보인다.

Keywords