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Tracking Control Design for Actuating Fin in Underwater Vehicle
Under Uncertain Load Torques
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Nomenclatures x . state variable

K,, K, ' gear ratio A, B, C: state, input, and output matrices
T,, T motor and load torque g( - ) vector related to uncertain terms
6., 6,, 0. fin angles x? : desired state variable

ms ’ * ~ B
. control input x © tracking error of the motor angle

¢ . V : Lyapunov function
Co ' torque coefficient

. . _ ¥y ! output

d;, 1=1,2,...: torque coefficients G : observer gain
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¥ © estimated state
K=1[k, k;]' feedback gain

‘A= A— BK : state matrix
o( +): bounding function
£ . control parameter

1. Introduction

The direction of the underwater vehicle
under the command signal from the main body
is adjusted by the four fins attached to the rear
part of the body. The fins are to be controlled
in the presence of external disturbances. The
external disturbances include the load torques
exerted to the fin which possess nonlinearity
and uncertainty. Recent papers"® on the
dynamics and control of the underwater
vehicles have been reported. These papers
mainly deal with the 6 DOF body dynamics
and its control. However, in the presence of
instantaneous changes of disturbances the fins
should maintain the desired positions. Thus, the
appropriate control of fins is crucial to
overcome this environment. The wave torque
which is uncertain and nonlinear is the main
concern in  this paper. Some  control
algorithms®®  are presented to tackle the
uncertainty. These approaches are based on full
state feedback.

In low speed heading or turning the external
force or torque can be estimated by estimating
the hydraulic force and moment. However, in
high speed the force or torque changes severely
due to the non-steady flow characteristics.
Therefore, a bound for uncertainties is based on
the experimental data or flud dynamics
analysis. Then, the bound can be implemented
in control design. In this paper a robust control
with full state feedback (angle and angular
velocity) is first employed. Like the system in
this paper, it i1s sometimes impossible to install
all sensors needed. Therefore, the control design
with feasible measurement is needed. To meet
this issue an output control or an observer
based control may be the key. Either the
output control or the observer based control is
needed for the case that the tachometer to
measure the angular velocity can not be
installed in the system. In this paper both the
output control and the observer based control
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are addressed. The control schemes are based
on the Lyapunov approach and the controls
render the system practically  stable®.
Furthermore, the controls rely on the possible
bound of uncertainty.

2. Uncertain system
Consider the following uncertain system

() =Rx(D,0(d), D

+UBGLD, )+ 4B, oD, Dlu(t), Y

where t€R, x()eR” is the state, usR"™
is the control input, and o(HeR’ is the
uncertain parameter vector. A +),B(:), and

4B( - ) are respectively known or unknown
vectors and matrices of appropriate dimensions.

The functions fiR"XR°x R—R",
B :R"XR—>R™" and 4B :R"XR—>R™" are
continuous.

Assumption 1. The (unknown) function
¢ :R—>3JC R’ is Lebesgue measurable with X
prescribed and compact.

3. System Description

The fin system consists of a DC motor and
reduction gears of spur gear type to increase
the actuating torque as shown in Fig. 1. The
motor receives the command signals from the
main body and should follow these commands
in the presence of uncertain load torque
exerting on the fin. The system dynamics can
be expressed as

T,— K\N,=(I,+ 1) 6,, (2)
N,Ky— Ny=—(Io+1,) 0,

Nz'_ TL= (IQ‘FIL) gL:

(3)
4)

where N) and N, represent the reaction forces
between the spur gears, I, I (i=1~4), I,
represent the motor inertia, the gear inertia, and
the fin inertia respectively. K; and K,

represent the gear ratios. 7, is the motor
torque and T; is the load torque acting on the

fin. 8,,6,, and @; represent the angles as
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shown in Fig. 1.

Fig. 1 Schematic diagram of actuating fin
system

For the electrical part of the motor, the
governing equations are written as follows.

di, .

L at +Rcla+ ey=Uu, (5)
e,,=1<e—‘?:t—"‘, 6)
T,=K, i, 7

where L and R, are the inductance and
resistance of motor armature coil, respectively.

¢, is the back emf voltage which is

proportional to the motor speed. K, and K,

are the motor-torque constant and back emf
constant, respectively. The following constraint
equations hold

Kl 6m= 01: (8)
K,6,= §,. 9)
Arranging (3-5 and (9-10), T,, can be

expressed as
T",:qu é‘m"'KleTL, (10)
where
L ) , o, (D
=Im+lsl+(152+]53)K1+(1&4+1L)K1 Kg.
Thus, by assuming that the inductance L is

negligible the dynamic equation of the actuator
becomes

L,6,+ KK,

R,

KK,
R.

0= u.— K\ K, Ty, (12)
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Note that %, is placed before the motor
amplifier, thus the control input voltage is
multiplied by K, ( =K, u. holds). The load
torque 7T is reported as a function of the fin

angle, angular velocity and flow velocity with
uncertain parameters such as™

To=Col6s, 6 (50, Ar UD.] (3

where Cg( +) denotes the torque coefficient

and p; denotes the flow density. Also, Ap is

the fin area, and U represents the flow
velocity. Note that Cg( -) varies with respect

to the fin displacement and its angular velocity.
However, the exact value of the torque
coefficient is not known. In the case that only
the static load torque was considered, the
governing equation of this value was reported
ast”

Cf8)=d\6,+d, 6,°, (14)
where d) and dy are partially uncertain
parameters. In this paper, the fact that the

torque coefficient is not expressed explicitly as
the above equation is stressed. The value may
be a function of the angular velocity too. Thus,
the general form of this value can be seen
that

CQ( 9L ’ O'L)

) . (15)
=d0,+d, 0,°+dy0,+d, 6,°+ds,

where the coefficients (d;~ds;) are unknown

parameters but the possible bound of those is
known by estimating the uncertainties or
experimental work. In the later development,
Co(+) in (15) is mainly utilized in control
design.

4. Control Design with Full State Feedback

For the control problem to tackle the
uncertainty acting on the fin due to external
disturbances a robust control based on the
Lyapunov approach is addressed. The control is
suitable to nonlinear uncertain system and it
relies on full state information. Even if the
motor dynamics excluding the fin dynamics is
of linear form we may not simply adopt the
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well known control algorithms such as H,

control® and optimal control” to the system
taken into account. The reason is from the fact
that the complex fin dynamics dominates the
control system while maneuvering or turning,
and the control input needs to be within the
motor driving capability during actuating, so
called conservativeness (occasionally occurs in
H., control). Here, the Lyapunov based robust

control is preferred, which relies on the possible
bound of uncertainty. First, a robust control
with full state feedback is addressed. The other
issue to exclude some state variables will be
presented later.

Construct the actuator dynamics in the form
of state space representation as

e =[0

0 ;I]x(t)+[ gl]u(t)

0
+[ CITL(xl,xz,a)] (16)
= AX( t)+ Bu(t) -‘rg(xl , X9, o’)’

where x=[0L 6517, and a;, b, and ¢, are
the parameters corresponding to the motor

specification. o + ) represents the uncertain
parameter. These values are expressed as

_ KK,
Rl

KK,

i S1:¢1
Relo ’

)= qu

a, = b‘z (17)

Let the tracking error of the motor angle be

~

x
x:i=x—x (18)

where x¢ represents the desired motor angle.
Then, the error dynamics follows from (16)

i =im A .
= Ax+Bu+g— x° ) (19)
=A x+ Ax"+ Bu+g— x°.
We use a robust control # as
w(=—Kx(H+p(D. (20)
Then, the error dynamics can be seen as
x=Ax+Bp+h, 1)
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where
W, 2.0) (22)
— 0 .
ayxy+ ¢, TL(%), %3, 0) — 4
Here, the gain K is chosen such that

‘A=A—BK is Hurwitz. The uncertain term

h( - ) satisfies the matching condition® as

W(x,, x2.0(0) = Be(x,, %3, o().  (23)
Then, e( *+ ) becomes
e(a?;, }-2, G(t)) (24)

=311—(alx§'+ o Ti( %), %2, 0) — x2).

Assumption 2. There exists a continuous

function e RXR-R,, such that for all
(31, 1)ERXR

max ~ ~

ge s el Dli=elx, %), (25)
This assumption holds since e(:) is
continuous and the parameter has its bound.
Thus, the function o(:) can be a

corresponding bounding function on e( - ).
Under the Assumptions 1-2 and a constant
e>0, the control is formed as

W) =—Kx(D+p(d

—_— k1 0 xl(t)—x'{(t) + p( £ 26)
0 kz[:q(t)*x?(t)] o,

where

WD =——HED oy iR €

ez, O @0
=_Agailp(;a, ifllu(Dli<e,
u( )= xTPB o( - ). (28)

Here, the positive definite P is the solution of
the Lyapunov equation

ATP+PA=—-Q. @O.
The detail proof on control (26) is shown'.

(29)
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Remark 1. The proposed control guarantees
the practical stability. Thus, the error dynamics
possesses the uniform boundedness, the uniform
ultimate boundedness and the uniform stability.
In other words, the error can enter some bound
after a certain time elapses, and remains there
afterward. Also, this uniform ultimate bound

size can be adjusted by a suitable choice of e&.
5. Control design with output feedback

Normally, the control design utilizes the full
state information which makes the design of
control algorithm easy. However, the full state
feedback requires all sensors for the state
variables to be installed. This causes high cost
and possibility that some signals are
contaminated, hence noise rejection should be
taken into account in implementation. The
previous work done in Section IV uses a
potentiometer to detect the fin angle, and a
tachometer to measure the angular velocity in
real implementation. However, it is sometimes
not possible to install the tachometer due to the
possible noise effect and the space limitation in
the system. Therefore, in this case the control
design should find out other alternatives. One
of these is an output control. The output
control scheme which is also robust to
uncertainty is introduced in this section.

For the given system we propose an output
control

u(f) =— Wx(8) + p, (D, (30)
where
(D =—7 (D)
N (31
=—vy C x,
W=[w, 0]. (32)

Here, C is the output matrix and the control
parameters y, C, and C, are determined as

Y= (33)
5 max o(2)°*
NA1>0 2(Cy+ CyAmn (QTQ) %D

C e (0, 1), CZE(O, 00).

Here, the bounding o(x) is computed from
(26). The control design employs
Kalman-Yocubovitch Lemma'” and the detail
proof will be shown later. To obtain the output

gain shown in (33) may be troublesome due to
the complexity of (33). The feasible computation
of the output control gain ¥ is needed
beforehand if possible. This 1is determined
according to the bounding condition of e( - ).
This will be shown later. Thus, more feasible
control design can be developed.

Eventually, the system (19) is practically
stable under the control (30). Furthermore, the
uniform ultimate bound ball size can be
arbitrary small by a suitable choice of C,. The
stability of the proposed control is proved by
the Lyapunov approach®®. In the following
development for the proof, the dimension of x
is assigned by #. Choose a Lyapunov function
candidate as

V= z Pz (34)

where P is a positive definite matrix. The
derivative of V along (20) follows from (30)
and (31)
V =21 Px
=2 3P (Az+Bpth)
= x (PA+ A P)x+2 x PBp

s (35)
+2 x° PBe
= 2 (PA+ A ' Px+2 x PB(—77)
+92 %' PBe.
Define
H(s)= C(s[- A) 'B. (36)

Since the function H(s) is SPR (strictly
positive real), there exist positive  definite
matrices PER™" and QeR"™"
(Kalman-Yacubovich Lemma) such that
A'P+PA=-Q7Q, (37)
Cc=B'P. (38)

Then, V follows from (37) and (38)
V=— TQTQ¥—2y i PB(CD +2 % PBe
<~ Amin(QTQIAZ -2y 2" PBBTP
+2Il z” PAllel . 39)
<~ Amn(QTQUAE— 241 x” PBII?
+20(DI %" PBI

< ~ A (@7 QU+ 252

If we choose ¥ such that
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o(D)*
PRt AN - W0

then, we have
V <= A (QT QAP
+ CMm'm(QTQ)HHIZ +C, 4
== (1= CAmn(QTQIAI*+ C,.

I we choose C,€(0,1) and Cy=(0, ) we
conclude that ¥<0Q for all ||4|> R, where

G
R= . (42)
\[(1—c1)Ami,,<QTQ)
Following (41) for #>0, if {|di<7, we can
satisfy the requirements of the uniform

boundedness, the uniform ultimate boundedness
and the uniform stability®.

For the brevity of the computation of the
gain 7y, consider special cases regarding to the
bounding conditions. Firstly, in case that the
uncertain term e( +) is bounded linearly,
namely the cone-bounded

lle(x, DlI<m, + myllx |l (43)

then, we have the following value on 7.

m}

. me 1
Cl min ( QTQ) ) (44)

7270 2(

Secondly, the case that the uncertainty satisfies
Lipschitz condition (globally or locally) is
considered.

lle( x, Dl <mllx |l (45)

Then, the gain 7 is determined as
2

2T
4C A min(QTQ)
For both case, the gain 7 is easily computed

and the value can be implemented in the output
control design.

Y= 7 (46)

6. Observer based control design

Consider the dynamic system
x=fx,u), 47
y=2g(x, ), (48)

where x is the state variable and #u is the

contro} input. y is the measurable output. Since
the system considered here is nonlinear, the
control needs to be of a nonlinear type as
follow.

u=a(x). (49)

Under the control input shown in (48), the
closed loop dynamics can be written as

x=Rx,{x)=F(x). (50)

Let the state estimation error be
¢ =x—1x, (51)

where x represents the estimated state
variable. Then, the control has the following
form

u=a(x)=dx—¢). (52)

Now, we propose the estimator design as

1= A%, 1)+ Gy—g(x, u), (53)

where G is the observer gain. The method to
obtain it will be shown later. Thus, the
estimator error dynamics can be seen that

= Rx,a(0) — Ax— ¢,a( 1))
+ Glg(x— ¢, a(x)) — g(x, a(X))].

By Taylor's series all terms in (58) are
arranged as follows

— Ax, o)~ (2L yda 236+ 04",
f(x— ¢, a(x )) (56)
= Rz, o)~ (SL)g+ (4D,
g(x ¢ (1( 55\)) (57)
= g(x, a(:?))-( o+ 0(¢%).

Then, the system dynam1cs and the error
dynamics can be expressed as

x=F<x)—<—"i)<—§—j:;>¢+ (4%, (58)

=1L+ G(E)14+ 0(4"). (59
Here, we see that the state variable x and the

estimation error ¢ are decoupled, hence if the
estimation error dynamics can be locally
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asymptotically stable by a suitable choice of
gain G, the state variable x in system (58)
vanishes.

6.1 Adopting to the fin control system

As suggested in Section VI, we apply the
estimator design to the fin control system. The
fin dynamics model shown in (16) is also
utilized here. For the tracking control system as

shown in (19) the control u in (26) is
employed to adopt the proposed estimator
design.

We introduce the observer based on (53) as
follow

x= Ax+ Butg(x )+ Xy— Cx). (60)
Again, A is same with that introduced in
Section IV. Then, the estimator error dynamics
can be written as

¢=(Z+—§—§+Gc)¢+0(¢2). 61)
Here, the observer gain G such that the
eigenvalues  of (1—4-+—g%+GC) become
negative needs to be chosen. Remember that

d

the eigenvalues of (A+ —5% + GC) depends

on the state variable x. The illustrated
examples to obtain the appropriate observer
gain ( are shown later.

Experience indicates that if the observer
poles are selected to be placed farther to the
left in the s-plane than the desired closed loop
poles a good design results. However, the
placement of all observer poles far to the left in
order to speed the convergence of the estimated
state and the real state is not always a best
strategy in case of the possible model
uncertainty. Therefore, after constructing a
linearized system for the system taken into
consideration here, the some of the observer
poles should be placed to the plant zeros and
the rest of the observer poles need to be placed
to the left along the classical Butterworth
configuration. Also, the output matrix C is

chosen such that A and C are observable.
The observer based control has the following
form.

w(f)=—K(x—x" )+ p(D, (62)
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where p(f) as shown in (25) compensates the
uncertain and nonlinear term. Furthermore, the
term p(f) needs to be of a function of the
estimator variables x rather than the state
variable x . To see how it can be changed
the following procedures are introduced. Firstly,

the bounding function o(x ) shown in (25) can
be computed as

o(Z. 9 . (63)
> r:;xz‘—gl*l‘alxg+ Cy TL(?I’ ;C\Zv 0)- xg “

Here, the possible bound of the load torque
T.(-) is used in computing the bounding
function o(x ). Secondly, for the system taken
into consideration determine K=[k; k;] such

that A=A—BK becomes Hurwitz. If we
choose an identity matrix as @ we obtain a

positive definite matrix PeR*% Thus, the
function (¥ ) in control is written as
AN o A\T
/l(x) —(; ico)dPTBp(ﬁa (64)
=| " %= P B p(x).
0— 0

Finally, for a given >0 the robust control
u(#) can be seen that

W) ==Lk kzl[;f:l_x}j]+ﬁ(t),

- 1 (65)

where

7 NN
K==zl

=— 2D 53 ifllu(F il <e.

o(x, 8 ifllu(z, 0l>e (g5

As shown in (65), the control only utilizes the
estimated state variable rather than the real
state variable. However, for the system
mentioned above #,, which is corresponding to
it does not
the
excluding ;c\l (i.e.,, reduced observer

design) is more feasible. This needs a further
investigation.

is already measurable. Thus,
need to estimate if necessary. Therefore,

Xy

control
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7. Simulations

The performance of the proposed controllers
for the fin system 1is verified through
simulations. For the system, the possible real
data are adapted even though some data is not
clearly known. The parameters are not given in
public for the brevity of security in this article.
These values are almost known. Even if these
are not exact the proposed controllers tackle the
unknown parts by designing robust schemes.

Based on the experimental report™ the
coefficients regarding to load torgue exerting on

the fin are given as d, =0.0756

and d;=—0.6710. However, these values may

not be exact but variable as the external
conditions change. Therefore, other formula
representing the external torque as shown in
(14) are employed instead. The corresponding
coefficients are also adapted. These values are
roughly assigned in simulations, hence the fact
that the torque is governed by this formula and
coefficients is not guaranteed. However, the
proposed schemes enable the system to tackle
the uncertainty for the partially known structure
with the possibly known bound of the
uncertainty. A motor angle is chosen to track
the 5sin(27*3f) deg. command. Fig. 2 shows
control histories of the fin system with a
simple PID control. There is a pretty much
steady state error. Fig. 3 shows the results of
the tracking histories through the output
control. Here, an output control gain y=100
which satisfies the condition expressed by (32)
is selected. Notice that the gain can be adjusted
by suitable choices of C;, C; after estimating
the bounding function p(x). We choose
Cy=0.2, C;,=10. It is shown that the control
enhances tracking performance. Fig. 4 illustrates
the tracking control performance via the

estimator designed which is robust to the
external disturbances.

3 6
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Fig. 2 Control histories of the system with a
PID control

An observer gain G=200 which satisfies the
condition expressed by (64) is chosen. The
tracking error is pretty small after a certain
time elapsed. It shows that the control tackles
the unknown external torque acting on the fin.
The tracking errors are pretty small and the
control performance is in good shape.
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Fig. 3 Control histories of the fin system with
a robust output control
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Fig. 4 Control histories of the fin system with
robust control via an estimator

8. Conclusions

The classes of robust control schemes for
underwater vehicle which possesses highly
nonlinearity and uncertain parameters are
proposed. Firstly, a robust control via full state
feedback is employed. Secondly, due to the
space limitation in the system an output control
scheme not using a tachometer to measure the
angular velocity of the fin is proposed. Under
the control through a suitable choice of
constants the controlled system guarantees the
practical stability. Lastly, the observer based
control which also excludes the necessity of
using tachometer is proposed. The control also
renders the system practically stable. The
ultimate boundedness bhall size also can be
adjusted for a suitable choice of control
parameters. Both of the output control and the
ohserver based control overcome the burden to
install a tachometer in the svstem. Since the
sensor is liable to be contaminated and is
troublesome in installation due to the limited
space, the control scheme with no tachometer
sensor is extremely recommendable.
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