단 신

아렌－류테늄 화학을 이용한 Ristocetin A의 BCF－고리를 닮은 환형 펩티드 전구물질의 효율적인 합성

李 基 昇
우석대한표 화하과
（1999．8． 18 접수）

An Efficient Synthesis of a Cyclic Peptide Precursor Mimicking BCF－Ring of Ristocetin A Using Arene－Ruthenium Chemistry

Lee，Kieseung
Department of Chemistry Wrosuk Universin；Chombak 565－701．Korea
（Received August 18，1999）

INTRODUCTION

Ristocetin A and teicoplanin，structually related to vancomycin，are representative members of a large and growing family of glycopeptide antibiotics and the struc－ tural features are the sugars on the aryi rings and the presence of a heptapeptide backbone cross－linked by dia－ ryl ether and biphenyl linkages．${ }^{\text {i }}$ The structural complex－ ity as well as their therapeutic activities against methicillin－resistant Staphyococtus cumeus（MRSA）and other gram－positive bacteria as the drug of lat－resort have made them attractive and challenging target．s for synthetic chemists more than three decides．＇and very recently the successful total syntheses of vancomycin and orienticin C（bis－dechlorovancomycin）aglyeons via multistep sequences have been reported．＇

The 16 －membered peptide ring constitutes a very important parent skeleton of the northern bicyclic frame－ work of glycopeptide aglycon and its synthesis has been an active research area．${ }^{4}$ During our study of BCF－pep－ tide ring cyclization problem using p－methoxyphenyl－ glycine as a F－component．＂we obtained an unexpected product．which was initially thought to be an atropisomer but later contirmed to be an epimer of the phenylalanine residue by the result of cycloetherification approach．＂ Considering that phenylglycine is far more racemization－ prone than phenylalanine by 30 times and p－methoxy
substituent of the phenylglycine suppress epimerization at its chiral center．？it is highly desirable to make a thor－ ough investigation whether simple phenylglycine for a F－component will be epimerized and／or will affect the epimerization at the chiral center of phenylalanine（ C ． component）during the cycloamidation step．Thus，in this paper，a new BCF－ring model precursor 9 with simple phenylglycine devoid of any electron－donating group on the aryl moiety，was synthesized（Scheme 1）for the model studies of the above－mentioned cycloamidation．

RESULTS AND DISCUSSION

The synthetic pathway to a new peptide ring precursor 9 begin with α－azidophenylacetic acid methyl ester 1 ． which was prepared in accordance with our previous result（Scheme 1）．${ }^{\text {．}}$

Reduction of azide to amine and simultaneous cleav－ age of the benzyl group of 1 using $\mathrm{Pd}-\mathrm{C} / \mathrm{H}_{2}$（ 1 atm ）in methanol provided free phenoxy amine 2 in excellent yield．This tree amine 2 was then coupled with Cbz－phe－ nylglycine 3 in the presence of EDC and HOBT at $0^{\circ} \mathrm{C}$ to fumish diastereomerically pure dipeptide 4 in 77% yield．The key coupling reaction was done as usual： Dipeptide 4 was treated first with sterically hindered base（sodium 2，6－di－t－butylphenoxide）and the resulting phenoxide antion was transferred into a precooled $\left(-78^{\circ} \mathrm{C}\right)$

Scheme 1. (a) Pd-C (10%), H_{3} (latm). (MeOH/THF, 1/1). 24 h. rt. 79% (b) N-Cbz-Phenylglycine (3). EDC. HOBT. $0^{\mathrm{n}} \mathrm{C} .77 \%$ (c) Sodjum 2,6-di-f-butylphenoxide (1.(keq). THF, $0^{\prime \prime} \mathrm{C}$ (15 min), Ru-complexed, p-chlorophenylalanine derivative (5) , $-78{ }^{\prime \prime} \mathrm{C}(15 \mathrm{~min})$, rt $(1.5 \mathrm{~h}), \mathrm{N}_{3}, 84 \%$ (d) Sunlamp (275W). $\mathrm{CH}_{3} \mathrm{CN}, 24 \mathrm{~h}, 3$ times, $\mathrm{N}_{2}, 56 \%$ (e) Nal (5.0eq). acetene, reflux, $5 \mathrm{~h} . \mathrm{N}_{2} .86 \%$ if) Sml: (7.0eq), DMPU (42.0eq), THF, rt, 2.5h, $\mathrm{N}_{2}, 81 \%$.
solution of Ru-complexed, p-chlorophenylatanine derivative 5^{5} in $\mathrm{THF}^{4 c}$ The coupling reaction was easily confirmed by ${ }^{3} \mathrm{H}$-NMR. showing the uptield-shift of aryloxylated. Ru-complexed aromatic proton peaks to ca. 6 ppm owing to aryl-ether oxygen and the presence of two amide rotamers with equal ratio. This amide rotamerism. attributed to the restricted rotation about a $\mathrm{C}-\mathrm{N}$ bond and well-documented in the literatures, ${ }^{*}$ has been consistently observed throughout free acid 9 as our related studies. ${ }^{5 . k}$ Ligand exchange reaction of 6 under photolytic conditions $\left(\mathrm{CH}_{3} \mathrm{CN}, 275 \mathrm{~W}\right.$. Quartz cell, $24 \mathrm{~h}, 3$ times) ${ }^{10}$ gave the demetallated, diaryl ether 7 in $c a .56 \%$ combined yield. In order to obtain the free cartoxylic acid for cyclolamidation reaction, bromoethyl ester 7 was treated with NaI in dry acetone to give iodoathyl ester 8 . which was then reacted with $\mathrm{SmI}_{2} / \mathrm{DMPU}$ to afford the desired free acid 9 in excellent yield. In conclusion, a new BCF-ring precursor 9 has been successfully prepared by utilizing our well-established protocols, and the cycloamidation study using various coupling reagents is in progress and will be reported in due course.

EXPERIMENTAL

Melting points were taken on a Thomas-Hoover apparatus and are not corrected. IR-spectra were recorded on a Nicolet Impact 400 using CHCl_{3} or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a sol-
vent. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz})$ and ${ }^{1.3} \mathrm{C}$-NMR (75 MHz) spectra were recorded in CDCl_{3}. DMSO- d_{n} on a Variarn Gemini- 300 spectrometer using TMS or $\mathrm{CHCl}_{3}(77.0$ ppm) as an internal standard. Optical rotations were recorded on a Perkin-Elmer 141 Polarimeter. EI, HRand LR-FAB mass spectra were recorded on a Kratos MS-25A instrument. Flash column chromatography was carried out on E. Merck 320-400 mesh silica gel and solvents are reported as V / V precent mixtures. THF was distilled from sodium tenzophenone ketyl; $\mathrm{CH}_{2} \mathrm{Cl}_{2} . \mathrm{Et}_{7} \mathrm{~N}$ and $\mathrm{CH} ; \mathrm{CN}$ were distilled from calcium hydride. n Butyllithium in hexane was obtained from Aldrich Co.. and standardized according to the reported method." All other commercial reagents were purchased from commercial sources and were used as received unless otherwise noted. The synthetic procedures for compound 6,7. 8. 9 were analogous to those described elsewhere."
(2R)-2-Amino-2-(3-hydroxy-4-methoxy)phenylacetic acid Methyl Fster (2). (2R)-2-Azido-2-(3-benzyloxy-4methoxy) phenylacetic acid methyl ester 1^{*} (394.8 mg . 1.21 mmol) was added to a stirred slurry of Pd-C (40 mg) in 40 mL of organic solvent ($\mathrm{MeOH} / \mathrm{THF}, 1 / 1$) and the resulting mixture was stirred for 1 h under H_{2} (1 atm), filtered through a celite pad ($1 \times 2 \mathrm{~cm}$) and the filtered cake was washed with MeOH . The combined organic layers were concentrated in vacto to afford a pale-brown solid, which was purified by flash column chromatography on silica gel $(\mathrm{EtOAc}$ then $\mathrm{EtOAc} /$ MeOH. 95/5). Yield : 202.2 mg (79%); mp 151.5-153.5 'C; $[\alpha]^{7+}\left[\right.$, $-106.6^{\prime \prime}$ (c $0.56, \mathrm{CHCl}_{3}$): $R_{i} 0.27$ (hexanes/EtOAc, 5/5): IR (CHCli) 3697. 3542, 3029. 2963, 1736, 1598. $\left.1515,1223 \mathrm{~cm}^{-1}: 1 \mathrm{H}-\mathrm{NMR}(\mathrm{CDCl})^{2}\right) \delta 6.94(\mathrm{~d}, \mathrm{IH}, J=1.8$ Hz, aromatic- $\left.\mathrm{H}^{-}\right), 6.86(\mathrm{dd}, \mathrm{H}, J=7.8,1.8 \mathrm{~Hz}$, aromatic$\left.\mathrm{H}^{\circ}\right), 6.82\left(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}\right.$, aromatic- H^{5}), $4.52(\mathrm{~s}, 1 \mathrm{H}$. ArCHCO_{2}), $3.88\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$; ${ }^{13} \mathrm{C}$-NMR (CDCl_{7}) $8174.5,146.4,145.8 .133 .5,118.4$, 113.1, 110.7. 58.2, 55.9.52.3: HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{13}$ $\mathrm{NO}_{4} 211.0845$, found 211.0849.
\boldsymbol{N}-(Phenylmethoxy)carbonyl-L-phenylglycine (3). L-Phenylglycine ($0.75 \mathrm{~g}, 4.96 \mathrm{mmol}$) was added to an aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.31 \mathrm{~g}, 12.4 \mathrm{mmol})$ in 38 mL of $\mathrm{H}_{2} \mathrm{O}$ in one portion and the resulting slurry was stirred vigorously until the acid was completely dissolved. and the solution was cooled to $0^{\circ} \mathrm{C}$ with an ice bath. To this was added benzyloxycarbonylchloride $(0.90 \mathrm{~mL}$.
1.27 equiv）by syringe and the resulting mixture was stirred vigorously for 2 h at $0^{\circ} \mathrm{C}$ ，then for 22 h at rt．The solution was washed with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 3)$ and the aque－ ous layer was acidified to pH 2 with $10 \% \mathrm{HCl}$ ．The white solid formed was filtered．washed well with cold $\mathrm{H}_{2} \mathrm{O}$ ，and then dissolved in 50 mL of EtOAc．The org－ anic layer was washed with $\mathrm{H}_{2} \mathrm{O}_{\text {，dried over } \mathrm{MgSO}_{4} \text { and }}$ evaporated．Purification of the crude product from flash column chromatography on silica gel（hexanes／EtOAc， $5 / 5$ ）fumished a white powder．Yield： $1.16 \mathrm{~g}(82 \%)$ ；mp $130.5-132.5^{\circ} \mathrm{C} ;[\alpha]^{73}{ }_{\mathrm{n}}+120.7^{\prime \prime}\left(\mathrm{c}, 0.65\right.$ ，EtOAc）；$R_{t} 0.21$ （ $\mathrm{EtOAc} / \mathrm{MeOH} .9 / 1$ ）：IR（ CHCl_{3} ）3436，3026， 1725, 1667， $1497 \mathrm{~cm}^{-1}$ ：${ }^{1} \mathrm{H}$ NMR（CDCl $\left.{ }_{3}\right) \delta 12.87(\mathrm{bs}, 1 \mathrm{H}$ ， $\left.-\mathrm{CO}_{3} H\right) .8 .12(\mathrm{~d}, \mathrm{IH}, J=8.1 \mathrm{~Hz} .-\mathrm{NHCbz}), 7.42 \cdot 7.29(\mathrm{~m}$, 10 H ，anomatic Hs$), 5.18(\mathrm{~d}, \mathrm{JH} . J=8.1 \mathrm{~Hz} .-\mathrm{CHCO}, \mathrm{H})$ ． 5.05 （s． $2 \mathrm{H},-\mathrm{OCH}_{3} \mathrm{Ph}^{2}$ ）；${ }^{15} \mathrm{C}$ NMR（ CDCl_{3} ）$\delta 172.1$. $155.9,137.1,136.9,128.4,128.3,127.9,127.7,65.6$ ， 58．1；HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4} 285.1001$ ，found 285．100］．
$N-[N$－（Phenylmethoxy）carbonyl－L－phenylglycinyl］－ D－（3－hydroxy－4－methoxy）phenylglycine Methyl Ester （4）．A mixture of crude α－aminoacid methyl ester 2 （ 186.0 mg .0 .88 mmol ），N－Cbz－phenylglycine 3 （276．3 mg．I． 1 equiv）and HOBT（ $142.9 \mathrm{mg}, 1.2$ equiv）was dissolved in 10 mL of mixed solvent（THF／DMF，1／1） and the resulting solution was cooled to $0^{\prime \prime} \mathrm{C}$ under N_{2} ， To this solution was added EDC（ 185.8 mg .1 .10 equiv） in one portion and the resulting mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ ，then 20 h at rt under N_{2} ．The solvent was evaporated in vactoo and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$（20 $\mathrm{mL} \times 3$ ）．The combined organic layers were washed with $\mathrm{NaHSO}_{1}(10 \mathrm{~mL}, \mathrm{IN}$ ），brine，dried over MgSO_{4} ，and concentrated．Flash column chromatogra－ phy of the crude product on silica gel（hexanes／EtOAc． $5 / 5$ ）and subseqent recrystallization from hexanes／THF （ $6 / 4$ ）afforded 325.1 mg （ 77% ）of diastereomerically pure product 4 as a white powder．mp $187.5-189.5^{\circ} \mathrm{C}$ ： $[\alpha]^{23}{ }^{2}-7.1$（c $0.42 . \mathrm{CHCl}$ ）；$R_{t} 0.41$（hexanes／EtOAc，4／6）； IR（ CHCl_{2} ）3545，3415．3033．2970，1738，1689． 1684. $1512,1220 \mathrm{~cm}^{-1}$ ：＇H NMR（CDCl ${ }_{2}$ ） $87.33 .7 .22(\mathrm{~m}$ ． 10 H ，aromatic Hs of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHNH}$－and Cbz ）．6．71－6．58 （ m .4 H ，amomatic Hs of $\mathrm{Ar}^{-\mathrm{Mm}}$ overlapped with $-\mathrm{N} H \mathrm{Cbz}$ ）． $6.00\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{Ar}^{-\mathrm{Me}} \mathrm{CHNH}\right.$ ）， 5.58 （s． 1 H, Phenolic－ H ）， $5.40(\mathrm{~d}, \mathrm{JH}, J=6.8 \mathrm{~Hz},-\mathrm{CH} \mathrm{NHCbz}), 5.29$（bs． 1 H ， $\mathrm{Ar}^{\mathrm{OMc} \mathrm{C}} \mathrm{CHNH}$ ） .5 .10 （d． $1 \mathrm{H}, J=12.3 \mathrm{~Hz},-\mathrm{OCHHPh}$ ）．
5.02 （d． $1 \mathrm{H} . l=12.3 \mathrm{~Hz},-\mathrm{OCH} H \mathrm{Ph}), 3.84(\mathrm{~s} .3 \mathrm{H}$, $\left.-\mathrm{OCH}_{2}\right) . \quad 3.70\left(\mathrm{~s}, 3 \mathrm{H} .-\mathrm{OCH}_{3}\right):{ }^{1} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 170.9,168.9,155.6,146.8,145.9,137.7,136.1,129.1$ ， 128．6．128．5．128．1，127．4．118．8，113．0．110．6，67．0． 58．7．56．2，55．9．52．9：HRMS calcd for $\mathrm{C}_{2} \mathrm{H}_{2 n} \mathrm{~N}_{2} \mathrm{O}_{7}$ 478．1740．found 478.1751 ．
［ $\eta^{\boldsymbol{n}}$－（2R，2＇R）－4－［2－：Methoxy－5－［1－［ N－（phenylmethoxy） carbonyl－L－phenylglycinyl］amino）－2－methoxy－2－oxo－ ethyl］phenoxy］－1－［3－（2－bromoethoxy）－2－［（1，1－dimetb－ ylethoxy）carbonyl］amino－3－oxopropyl］－benzene］（ $\boldsymbol{\eta}^{5}$－ cyclopentadienyl）ruthenium Hexafluorophosphate（6）． Dipeptide 4 was coupled with chloroarene－Ru complex 5^{5} as usual to afford aryloxylated，arene－Ru complex 6 as a pale－brown solid foam．Mixture of two amide rotam－ ers．Yield： 87% ；IR $\left(\mathrm{CHCl}_{5}\right) 3684,3421.3019 .2987$. 1741，1707．1602，1511．1500， $1216 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{4}\right) 87.42-6.80\left(\mathrm{~m} .14 \mathrm{H}\right.$, aromatic Hs of $\mathrm{Ar}^{-6 \mathrm{Me}}, \mathrm{Ar}$ ， Cbz ，overlapped with－ $\mathrm{N} H \mathrm{Cbz}$ ），6．46－5．82（m， 5 H ，aro－ matic $\mathrm{Hs} \mathrm{Ar}{ }^{\mathrm{Ru+}}$ overlapped with $\mathrm{Ar}^{-(\mathrm{Me}} \mathrm{CHNH}$ ）．5．54－ $5.00\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}^{-0 \mathrm{Mc}} \mathrm{C} H \mathrm{NH}-.-\mathrm{CHNHCbz}, \mathrm{Cp},-\mathrm{OCH}_{3} \mathrm{Ph}\right.$ ， $-\mathrm{NHBOC}), 4.53-4.4 \mathrm{I}\left(\mathrm{m}, 3 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right.$ overlapped with -CHNHBOC ）， 3.84 （ $\mathrm{s}, 3 / 2 \mathrm{H},-\mathrm{OCH}_{3}$ ）， $3.82(\mathrm{~s}, 3 / 2 \mathrm{H}$ ． $\left.-\mathrm{OCH}_{3}\right), 3.77\left(\mathrm{~s}, 3 / 2 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.70\left(\mathrm{~s}, 3 / 2 \mathrm{H} .-\mathrm{OCH}_{7}\right)$ ， $3.11-2.80\left(\mathrm{~m} .2 \mathrm{H} . \mathrm{As}^{\mathrm{Ru}+} \mathrm{CH}_{2}\right.$ ）， 1.42 （ $5.9 \mathrm{H},-$ BOC）．
（2R）－3－［4－［3－（2－Bnomoethoxy）－2－［（1，1－dimethylethoxy） carbonyl］－amino－3－0xopropyl］phenoxy］－4－methoxy－N－ ［ N－（phenylmethoxy）－carbonyl－L＿phenylglycinyl］－D－phen－ ylglycine Methyl Ester（7）．Aryloxylated，arene－Ru－ complex 6 was demetallated three times（ $24 \mathrm{~h} \times 3$ ）as usual to give the pale－brown residue，which was purified by flash column chloromatography $\left(\mathrm{SiO}_{2}\right.$ ．hexanes／EtOAc， 6／4）to provide 7 as an off－white solid．Mixture of two amide rotamers．Total yield： 56% ：$[\alpha]^{23}{ }_{5}{ }_{5}+34.9(c, 0.45$ ， CHCl_{3} ）：$R_{i} 0.30$（hexanes／EtOAc，5／5）：IR $\left(\mathrm{CHCl}_{3}\right)$ 3440 （br），3020，2986．1774，1710，1693．1512．1223， $1177 \mathrm{~cm}^{-1}$ ，＇H NMR（CDC1 $\left.{ }_{3}\right) \delta 7.34-6.72(\mathrm{~m}, 18 \mathrm{H}$ ，aro－ matic Hs overlapped with－NHCbz）． 6.09 （bs，1H， $\left.\mathrm{Ar}^{-\mathrm{Me}} \mathrm{CHNH}-\right), 5.46-5.32(\mathrm{~m}, 2 \mathrm{H}$ ，wo doublets $(21 / 2 \mathrm{H})$ of -CHNHCbz overlapped with $\mathrm{Ar}^{-0 \mathrm{Mc}} \mathrm{CH}: 5.44$（d，1／ $2 \mathrm{H}, J=6.8 \mathrm{~Hz},-\mathrm{C} H \mathrm{NHCbz}) .5 .39(\mathrm{~d}, \mathrm{l} / 2 \mathrm{H}, J=6.8 \mathrm{~Hz}$ ． $-\mathrm{CH} \mathrm{NHCbz})$ ）， $5.15-4.99(\mathrm{~m}, 3 \mathrm{H}$ ，two doublets $(21 \mathrm{H})$ of $-\mathrm{OCH}_{2} \mathrm{Ph}$ overlapped with -NHBOC ： 5.07 （d． 1 H ． $J=12.2 \mathrm{~Hz},-\mathrm{OCHHPh}$ ）， 5.01 （d． $1 \mathrm{H}, J=12.2 \mathrm{~Hz}$ ． －OCHHPh），4．60－4．56（m． $1 \mathrm{H},-\mathrm{CHNHBOC}), ~ 4.43-4.36$ $\left(\mathrm{m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}, \mathrm{Br}\right), 3.79\left(\mathrm{~s}, 3 / 2 \mathrm{H} . \mathrm{OCH}_{3}\right), 3.76(\mathrm{~d}, 3 /$
$2 \mathrm{H} .-\mathrm{OCH}, 3.38(\mathrm{~s}, 3 / 2 \mathrm{H},-\mathrm{OCH}), 3.62(\mathrm{~s}, 3 / 2 \mathrm{H}$, $-\mathrm{OCH}), 3.46-3.4 \mathrm{I}$ (m, $\left.2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right) .3 .07$ (bs. 2 H , $-\mathrm{CH}_{2} \mathrm{CH} N \mathrm{HBOC}$) 1.41 (s. $9 \mathrm{H},-\mathrm{BOC}^{-}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-dn) $\delta 9.08$ (d. $1 / 2 \mathrm{H} . J=7.7 \mathrm{~Hz}$), 9.01 (d. $1 / 2 \mathrm{H}$. $J=7.7 \mathrm{H} / \mathrm{s} .7 .96(\mathrm{~d} .1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.43-6.95(\mathrm{~m}, 16 \mathrm{H})$, $6.73(\mathrm{~d} .1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.68(\mathrm{~d}, I \mathrm{H}, J=8.4 \mathrm{~Hz}) .5 .46(\mathrm{~d}$. $1 / 2 \mathrm{H} . J=9.2 \mathrm{~Hz}) .5 .42(\mathrm{~d}, 1 / 2 \mathrm{H}, J=9.1 \mathrm{H} /) .5 .35(\mathrm{~d} .1 / 2 \mathrm{H}$, $J=3.4 \mathrm{H} 7$) , $5.33(\mathrm{~d}, 1 / 2 \mathrm{H}, J=3.2 \mathrm{~Hz}), 5.02(\mathrm{~s} .2 / 2 \mathrm{H}$, -OCH 2 Ph), 5.01 ($\mathrm{s}, 2 / 2 \mathrm{H} .-\mathrm{OCH} \mathrm{Ph}^{2}$). 4.41-4.29 (m. 2 H , $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$). $4.18-4.11 \mathrm{~m} .1 \mathrm{H} .-\mathrm{CHNHBOC}$). 3.72 (s. $3 / 2 \mathrm{H},-\mathrm{OCH}), 3.7(\mathrm{f}, 3 / 2 \mathrm{H},-\mathrm{OCH}), 3.61(\mathrm{~s}, 3 \mathrm{H}$, -OCH) , 3.52 (m, $\left.2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right) .2 .97$ (dd. 1 H. $J=14.0,4.7 \mathrm{~Hz},-\mathrm{CHHCHNHBOC}$), 2.83 (dd, IH $J=14.0 .10 .0 \mathrm{~Hz},-\mathrm{CH} H \mathrm{CHNHBOC}), 1.32$ (s .9 H, - $B O C$): HRMS FAB ($m-\mathrm{NBA}$) calcd for (MH) $)^{+}\left(\mathrm{Br}^{74}\right.$. $\left.\mathrm{Br}^{41}\right) 848.2394$. 850.2373. found $\left(\mathrm{MH}^{+}\right)\left(\mathrm{Br}^{79}, \mathrm{Br}^{8:}\right)$ $848.2349,850.2358$: Anal. caled for $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{Br} \cdot \mathrm{N}: \mathrm{O}_{11}: \mathrm{C}$. 59.44: H. 5.46: N. 4.95. Found:C, 59.80; H, 5.70:N. 4.80 .
(2R)-[3-[4-[2-[(1.1-Dimethylethoxy)carbonyl]amino-3-oxo-3-(2-iodoethoxy)propyl]phenoxy]- N-[N-(phenylmethoxy) carbonyl-L,-phenylglycinyl]]-D-phenylglycine Methyl Ester (8). Halide exchange reaction of bromoethyl ester 7 as usual afforded iodoethyl ester 8 as an oftwhite solid form after flash column chromatography (SiO_{2}. hexanes/ErOAc. $5 / 5$). Mixture of two amide rotwhers. Yield: $86 \% ;[\alpha]^{]_{1}}{ }_{0}+34.3^{\prime \prime \prime}\left(\mathrm{c} 0.65, \mathrm{CHCl}_{3}\right) ; R_{3} 0.35$ (hexanes/EtOAc. 5/5); 1 R (CHCl_{1}) 3431 (br), 3018. 2989. 1744, 1716, 1507, 1218. $1173 \mathrm{~cm}^{-1}$; 'H NMR (CDCl3) $\delta 7.35-6.72$ im. 18 H . aromatic Hs overlapped with $-\mathrm{N} H \mathrm{Cbz}$), 6.15 (bs. 1H. A ${ }^{(2) \mathrm{M}} \mathrm{CHNH}$) , 5.49-5.39 (m. 2 H . Two doublets $(2 \times 1 / 2 \mathrm{H})$ of -CHNHCbz overlapped with $\mathrm{Ar}{ }^{(\mathrm{Ne}} \mathrm{CH}-:(5.45(\mathrm{~d}, 1 / 2 \mathrm{H}, J=7.0 \mathrm{~Hz},-\mathrm{C} H \mathrm{NHCbz})$. $5.40(\mathrm{~d}, \mathrm{I} / 2 \mathrm{H}, J=6.9 \mathrm{~Hz},-\mathrm{C} H \mathrm{NHCbz})$), $5.14-4.97$ (m . 3 H . Two doublets $(2 \times 1 \mathrm{H})$ of $-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Ph}$ overlapped with $-\mathrm{CHNHBOC}:(5.08(\mathrm{~d} .1 \mathrm{H}, j=4.7 \mathrm{~Hz},-\mathrm{OCH} H \mathrm{Hh})$, 5.02 (d. $1 \mathrm{H}, ~ J=4.7 \mathrm{~Hz},-\mathrm{OCH} H \mathrm{Ph}), 4.57(\mathrm{~m}, ~ \mathrm{IH}$, -CHNHBOC). 4.35-4.30 (m, 2H. $-\mathrm{CH}_{2} \mathrm{CH}_{5} \mathrm{I}$), 3.77 (s. $3 /$ $2 \mathrm{H} .-\mathrm{OCH}$) , $3.75\left(\mathrm{~s}, 3 / 2 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.67(\mathrm{~s}, 3 / 2 \mathrm{H}$, -OCH), $3.61(\mathrm{~s} .3 / 2 \mathrm{H},-\mathrm{OCH}) .3 .23-3.2 \mathrm{l}$ (m. 2 H , $-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$), $3.19-3.06$ (m. $2 \mathrm{H} .-\mathrm{CH} \mathrm{CHNHBOC}_{2}$, I.4] (s. 9H. - BOC): HRMS FAB (m :NBA) cacld for (MH) ${ }^{+}$ 896.2257, found 896.2291; Anal. cacld for $\mathrm{C}_{42} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{I}$: C. 56.32: H. 5.18: N, 4.69. Found:C. 56.61: H. 5.36: N, 4.56 .
(R)-4-[2-Methoxy-5-[[1-[N-(phenylmethoxy)carbonyl-L-phenyl-glycinyl]amino]-2-methoxy-2-oxoethyljphenoxy]N - (1,1-dimethyl-ethoxy)cabonyl-D-phenylalanine (9). Deprotection of 2 -iodoethyl ester 8 into carboxylic acid 9 was accomplished by using SmI, and DMPU as usual. Purification of the crude product by flash column chromatography on SiO_{2} (hexanes/EtOAc/AcOH. $35 / 65 / 1 \%$ then $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 70 / 30 / 1 \%\right)$ provided $58.4 \mathrm{mg}(81 \%)$ of pure acid 9 as a white solid powder. Mixture of two amide rotamers. Yield: $81 \% ; R, 0.42$ (hexanes/EtOAc/ AcOH. 20/80/f\%); $[\alpha]^{29}+24.1^{41}\left(c \quad 0.53, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right) 3683,3627,3428(\mathrm{br}) .3020,2981.1737$, 17(44(br), $1686.15099,1429.1222 .1048,929 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl; $\delta 7.38-6.69(\mathrm{~m}, 18 \mathrm{H}$. aromatic Hs overlapped with $-\mathrm{N} H \mathrm{Cbz}), 6.36\left(\mathrm{~d}, 1 \mathrm{H}, \sqrt{2}=2.5 \mathrm{~Hz}, \mathrm{Ar}^{-(\mathrm{MM}}\right.$ $\mathrm{CHN} H-$) 5.41 (bs. $1 \mathrm{H}, \mathrm{Ar}^{-2 \mathrm{Me}} \mathrm{CHNH}-5.36$ (d. IH , $J=7.3 \mathrm{~Hz},-\mathrm{CHNHCbz}), 5.33$ (d. $\mathrm{IH}, J=7.3 \mathrm{~Hz}$. $-\mathrm{NHBOC}), 5.05\left(\mathrm{~s}, 2 \mathrm{H} .-\mathrm{OCH}_{2} \mathrm{Ph}\right) .4 .33-4.28(\mathrm{~m} .1 \mathrm{H}$. -CHNHBOC), 3.77 (s. $3 / 2 \mathrm{H} .-\mathrm{OCH}$), $3.74(\mathrm{~s}, 3 / 2 \mathrm{H}$, $-\mathrm{OCH}), 3.66(\mathrm{~s}, 3 / 2 \mathrm{H},-\mathrm{OCH}), 3.59(\mathrm{~s} .3 / 2 \mathrm{H},-\mathrm{OCH}, \mathrm{N}$ $3.08(\mathrm{dd}, \mathrm{IH}, J=13.7,5.0 \mathrm{~Hz}, \mathrm{ArCHHCHCO}, \mathrm{H}) .2 .92-$ $2.83(\mathrm{~m}, \mathrm{H} . \mathrm{ArCH} H \mathrm{CH}-), 1.36(\mathrm{~s}, 9 \mathrm{H},-\mathrm{BOC}) ; \mathrm{HRMS}$ $\mathrm{FAB}(m-\mathrm{NBA})$ calcd for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{11}(\mathrm{MH})^{-} 742.2976$. found 742.3000: Anal. calcd for $\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{1:}$: C. 64.77: H. 5.84: N, 5.66. Found C. 64.66; H. 6.26; N, 5.51.

Acknowledgment. The author would like to thank Professor A. J. Pearson at Case Westem Reserve University, Cleveland, Ohio. Li. S. A. for his invaluable advice, and also acknowledge tinancial support from Woosth University.

REFERENCES

1. Glveopeptide anribiotic: Nagarajan, R. Ed.: Marcel Dekker Inc.: New York, 1994, Other references cired thereirn.
2. (a) Rao. R. A. V.: Gurjar, M. K.: Reddy, L.; Rao, A. S. Chem. Rev 1995. 95, 2135. Other references cited therein. (b) Vergne, C.; Bois-Choussy, M.: Beugelmans, R.; Zhu. J. Tefrchedmm Lefr. 1997, 33, 1403. (c) BiosChoussy, M; Vergne, C.: Neuville, L.; Beugelmars. R.; Zhu, J. Tetrahedron Left. 1997, 33. 5795. (d) Pearson. A. J.: Celliah. M. J. Org. Chem. 1998, 63, 3087.
3. (a) Evans, D. A.: Barrow, J. C.: Watson, P. S.: Ratz, A. M.: Dinsmore. C. J.: Evrard. D. A.; Devries. K. M.; Ellman. I. A.; Rychnovsky, S. D.; Lacour. J. J. Am.

Chem．Soc：1997，H9， 3419 ．（b）Nicolaou．K．C．：Nat－ arajan．S．：Li，H．：Juin，N．F．：Hughes，R．；Solomon．M． E．；Ramanjulu，J．M．：Boddy，C．N．C．：Takayanagi．M． Angew：Chem．Iht．Ed．Engh．1998．37，2708．（c）Nico－ laou，K．C．：Jain．N．F．；Natarajan，S．；Hughes．R．； Solomon．M．E．：Li．H．：Ramanjulu．J．M．：Takayanagi， M．；Koumbis．A．E．；Bando．T．Angew：Chem．In．Ed． Engl．1998，37，2714．（d）Nicolaou，K．C．：Takayanagi， M．；Jain，N．F．；Natarajan．S．；Koumbis，A．E．：Bando， T：：Ramanjulu，J．M．Angew：Chem．，Ih．Ed．Engl． 1998，37， 2717.
4．（a）Marn．M．J．：Part，N．，Hamilton．A．D．J．Chem． Soc．，Chem．Commurn．1986，158．（b）Hamilton，A．D．： Part，N．，J．Am．Chem．Soc．1988，170，2002．（c）Crim－ min，J．J．：Brown，A．G．Tetrahedron Left．1990， 31. 2021．（d）Stone，J．J．；Van Dyk，M．S．；Booth，P．M．； Williams，D．H．J．Chem．Soc．，Perkin Trans．I． 1991, 1629．（e）Pearson，A．J．；Park．J．G．J．Org．Chem． 1992．57．1744．（f）Beugelmans，R．；Zhu，J．：Husson， N．：Bios－Choussy，M．：Singh，G．P．J．Chem．Soc．， Chem．Conmum．1994．439．（g）Beugelmans，R．； Singh，G．P．；Bois－choussy M．；Chastanet，J．；Zhu．J．J． Org．Chem．1994，59，5535．（h）Boger，D．L．； Yohannes．D．J．Org．Chem．1991，56，1763．（i）Boger， D．L．；Nomoto，Y．；Teegarden．B．R．J．Org．Chem． 1993．58，1425．（j）Rao，A．V．R．；Reddy，K．L．：Rao，

A．S．Terrahedron Lett．1994，35．8465．（k）Pearson，A J．：Bignan．G．；Zhang，P．：Celliah，M．J．Org．Chem． 1996．6／，3940．（I）Boger．D．L．：Castle，S．L．： Miyazaki，S．；Wu，J．H．；Beresis．R．T．；Loiseleur．O．J． Org．Chem．1999，64，70．（m）Nicolaou，K．C．；Raman－ jula，J．M．；Natarajan，S．；Braese．S．：Li．H．；Booldy，C． N．C．；Ruebsam，F．J．Chem．Soc．，Chem．Commun． 1997． 1899.
5．Pearson．A．J．：Lee．K．J．Org．Chem．1995，60． 7153.
6．Pearson．A．J．：Zhang，P．；Bignan．G．J．Org．Chem． 1997，62， 4536.
7．Smith，G．G．；Sivakua，T．J．Org．Chem．1983． $48,627$.
8．Pearson，A．J．：Shin，H．J．Org．Chem．1994，59． 2314.
9．（a）Laplanche，L．A．；Rogers，M．T．J．An．Chem．Soc： 1964，86，337．（b）Abell，A．D．；Taylor，J．M．J．Org． Chem．1993，58，14．（c）Larypov，S．K．；Seco，J．M．； Quinoa，E．；Riguera，R．J．Org．Chem．1995，60． 1538. （d）Kitamura，M．；Tsukamoto，M．；Takaya，H．：Noyori， R．Bull．Chem．Soc．Jpn．1996，69．1695．（e）Gung．B． W．：Zhu．Z．Tetrahedron Lett．1996．37．2189．（f） Manea，V．P．；Wilson．K．J．；Cable，J．R．J．Am．Chem． Soc．1997，／／9， 2033.
10．Gill，T．P．：Mann，K．R．Organometallics 1982，／， 485.
II．Duhamel，L．：Plamquevant．J．J．Org．Chem．1995， 60 ， 7153.

