Kinetic Study on the Alkaline Hydrolysis of the Substituted Phenyl N,N-diethyl-P-benzylphosphonamidates

치환 Phenyl N,N-diethyl-P-benzylphosphonamidates의 염기성 가수분해 반응에 대한 속도론적 연구

  • 손경화 (경상대학교 자연과학대학 화학과) ;
  • 신갑철 (경상대학교 자연과학대학 화학과)
  • Published : 19990200

Abstract

The second order rate constants for the hydrolysis of substituted phenyl N,N-diethyl-P-benzylphosphonamidates (2,4-$(NO_2)_2$, 4-$NO_2$, 4-CN, 4-Cl, 4-H)in 20% dioxane-water (v/v) have been determined by UV/Vis spectrophotometric method at various temperatures. The activation parameters (Ea, ${\Delta}H^{\neq}$,${\Delta}S^{\neq}$) were calculated from the rate constants and the reaction constant ($\rho$) was also estimated by Hammett equation. The activation entropies of the title reactions show considerably negative values, this result is not consistent with a dissociative mechanism (EA) in which a positive or a slightly negative value of the entropy of activation should be expected. Further, kinetic evidence for an associative mechanism (AE) was obtained from the linear free energy relationship. By the results of kinetic study for the alkaline hydrolysis of substituted phenyl N,N-diethyl-P-benzylphosphonamidates, it may be concluded that these reactions proceed through an associative mechanism.

Phenyl N,N-diethyl-P-benzylphonamidate 및 그 유도체들의 염기성 가수분해 반응속도 상수를 분광 광도법으로 측정하였다. 속도 상수로부터 열역학적 파라메타(Ea, ${\Delta}H^{\neq}$,${\Delta}S^{\neq}$)를 구하였고, 이탈기의 치환기 효과는 Hammett 식을 이용하여 얻었다. 이들 실험 자료에 의하면 가수분해 반응은 활성화 엔트로피가 양의 값이나 작은 음의 값을 갖고 카르보음이온 생성이 수반되는 해리반응 보다는 이중피라미드 중간체 또는 전이 상태를 경유하는 회합 메카니즘을 강력히 암시하고 있다. 반응속도론적 연구 결과에 의하면 치환 pheny N,N-diethyl-P-benzylphosphonamidates의 가수분해 반응은 회합성 메카니즘으로 진행됨을 알 수 있었다.

Keywords

References

  1. Adv. Phys. Org. Chem. v.25 Thatcher, G. R. J.;Kluget, R.
  2. J. Chem. Soc., Perkin Trans. 2 Wilkie, J.;Gani, D.
  3. J. Chem. Soc., Perkin Trans. 2 Freeman, S.;Harger, M. J. P.
  4. Chem. Rev. v.81 Westeimer, F. H.
  5. Top. Curr. Chem. v.97 Regitz, M.;Maas, G.
  6. J. Chem. Soc. Heath, D. F.
  7. J. Am. Chem. Soc. v.87 Traylor, P. S.;Westheimer, F. H.
  8. J. Chem. Soc., Perkin Trans. 2 Bourne, N.;Williams, A.
  9. J. Am. Chem. Soc. v.110 Friedman, J. M.;Freeman, S.;Knowles, J. R.
  10. J. Chem. Soc., Perkin Trans. 2 Harger, M. J. P.
  11. J. Chem. Soc., Perkin Trans. 2 Williams, A.;Douglas, K. T.;Loran, J. S.
  12. J. Am. Chem. Soc. v.113 Messer, R. P.
  13. J. Am. Chem. Soc. v.112 Reed, A. E.;Schleyer, P. von R.
  14. J. Am. Chem. Soc. v.109 Streitwieser Jr. A.;Rajca, A.;Mcdowell, R. S.;Glaser
  15. J. Chem. Soc., Perkin Trans. 2 Williams, A.;Douglas, K. T.
  16. J. Kor. Chem. Soc. v.41 Shon, K. H.;Park, K. K.;Lee, B. Y.;Shin, G. C.
  17. J. Chem. Soc. Perkin Trans. 2 Cevasco, G.;Thea, S.
  18. J. Chem. Soc. Perkin Trans. 2 Williams, A.;Douglas, K. T.
  19. J. Chem. Soc., Perkin Trans. 2 Williams, A.;Douglas, K. T.
  20. J. Am. Chem. Soc. v.96 Wiseman, J.;Westheimer, F. H.
  21. J. Am. Chem. Soc. v.96 Clapp, C. H.;Westheimer, F. H.
  22. J. Am. Chem. Soc. v.97 Rebek, J.;Gavina, F.
  23. J. Am. Chem. Soc. v.97 Rebek, J.;Gavina, F.
  24. J. C. S. Chem. Comm. Douglas, K. T.;Ateltner, A.
  25. J. Chem. Soc. Kinnear, A. M.;Perren, E. A.
  26. J. Am. Chem. Soc. v.61 Harned, H. S.;Fallon, L. D.
  27. J. Am. Chem. Soc. v.99 Dewar, M.;Thiel, W.
  28. Chem. Rev. v.75 Williams, A.;Douglas, K. T.
  29. J. Chem. Soc. B Williams, A.;Naylor, R. A.
  30. Tetrahedron Lett. v.26 Cook, R. D.;Araby, L. R.
  31. J. Chem. Soc., Perkin Trans. 2 Williams, A.
  32. J. Chem. Soc. Hegarty, A. F.;Frost, L. N.
  33. Ionization Constants of Acids and Bases Albert, A.;Serjeant, E. P.
  34. J. Chem. Soc., Perkin Trans. 2 Cevasco, G.;Thea, S.
  35. J. Am. Chem. Soc. Davy, M. B.;Douglas, K. T.;Loran, J. S.;Ateltner, A.;Williams, A.