단 신

N-치환된 Nortropane Spirohydantoin 유도체의 합성

「鄭大一*・朴鐳勳・朴七星・金侖瑛・鄭斗熙・金寅植'・朴敏洙"

동아대학교 자연과학대학 화학과 '동아대학교병원 산업의학과 '경성대학교 약학대학 약학과 (1998. 8. 5 접수)

Synthesis of N-substituted Nortropane Spirohydantoin Derivatives

Dai-Il Jung*, Jong-Hoon Park, Chil-Sung Park, Yun-Young Kim, Doo-Hee Jung In-Shik Kim', and Min-Soo Park"

Department of Chemistry, Dong-A University, Pusan 604-714, Korea 'Dong-A University Hospital, Pusan 602-715, Korea "Department of Pharmacy, Kyungsung University, Pusan 608-736, Korea (Received August 5, 1998)

A series of tropane and nortropane 3-spiro-5'hydantoins showed anticonvulsant activity against pentylenetetrazol-induced convulsions in mice and antiarrhythmic activity in rabbit previously treated with ouabain.¹⁻⁴

As a part of our study on the improvement of anticonvulsant, here we report the synthesis of corresponding N-substituted nortropane spirohydantoins by using N-substituted nortropinones. Already we reported the synthesis of N-substituted nortropinones derived from the reaction of amine, 2,5-dimethoxytetrahydrofuran and acetonedicarboxylic acid.⁵

N-Substituted nortropane spirohydantoins $(3a \sim e)$ were respectively synthesized by the reactions of N-substituted nortropinones $(2a \sim e, 0.01 \text{ mol})$ in ethanol (10 ml) with potassium cyanide (0.015 mol) and ammonium carbonate (0.03 mol) in water (Scheme 1).

The reaction mixture was heated at $60 \,^{\circ}$ C in a sealed ampule for reaction time as shown in *Table* 1. After cooling, the product precipitated solid was removed by filteration. The mother liquor was concentrated (~50%) under reduced pressure and cooled, and the resulting solid was collected and

combined with the first product obtained (*Table* 1). The hydantoin was washed with cold water three times $(3 \times 15 \text{ ml})$. The yield, mp, IR and ¹H NMR of the products **3a-e** are summarized in footnote.⁶ The formation of *N*-phenylnortropane spirohydantoin³ (isolated yield, 14%), *N*-(*p*-fluorophenyl)nortropane spirohydantoin (isolated yield, 61%), and *N*-(*p*-*t*-butylphenyl)nortropane spirohydantoin (isolated yield, 61%), and *N*-(*p*-*t*-butylphenyl)nortropane spirohydantoin (isolated yield, 63%) were only confirmed by GC-Mass spectra.

Structural assignments of 3 were established based on ¹H NMR spectral data. For example, in

N-substituted Tropinones 2	Reaction time (h)	Yield (%)	N-substituted nortropane spirohydantoins 3	Reaction time (h)	Yield (%)
a	8	54	а	14	56
b	6	50	ь	20	76
с	8	58	с	18	77
đ	12	31	d	26	87
e	6	70	e	14	70

Table 1. Physical data of N-substituted tropinones 2 and N-substituted nortropane spirohydantoins 3

the case of **3a**, H-1' and H-3' of spirohydantion ring appear $\delta 10.63$ and $\delta 8.09$, respectively. The signals of the H-1 and H-5 clearly indicate $\delta 3.06$. And the signals of the H_{2,4α} and H_{2,4β} are seen at $\delta 1.45$ and at $\delta 2.12$, respectively. The difference of 0.7 ppm was produced by the field effect due to the magnetic anisotropy of the C-4' carbonyl group. Methyl protons of N-8 clearly appear at $\delta 2.20$ and the C-6 and C-7 methylene protons are seen at $\delta 1.87$. Mass spectrum of **3a** showed molecular ion peaks at m/z 209 (27%). The elemental analysis were also well matched with theoretical values.

The structures of all other products were confirmed by the same manner as the **3a**. The biological studies of these compounds are in progress and will be reported in future.

Acknowledgement. This work was supported in part by a grant of Dong-A University (1998) and in part by a grant of the 97' Good Health R& D Project (HMP-96-D-1-0001), Ministry of Health and Welfare.

REFERENCES

- Trigo, G. G.; Martinez, M. Pharm. Mediterr. 1974, 10, 643.
- Sacristan, A. G.; Illera, M.; Sancher, F. S. Arch. Farmacol. Toxicol. 1977, 3, 57.
- Trigo, G. G.; Martinez, M.; Gâlvez, E. J. of Pharm. Sci. 1981, 70, 87.
- Izquierdo, M. L.; Gâlvez, E.; Burgos, C.; Florencio, F. J. Heterocyclic Chem. 1988, 25, 419.
- Jung, D. I.; Park, J. H.; Roh, S. A.; Lee, Y. K.; Park, Y. M.; Kim, I. S.; Jeong, I. S.; Park, M. S. J. Kor. Chem. Soc. 1997, 4, 1, 414.

6. Tropane spirohydantoin³ 3a: Yield 56%; mp. 220°C; ¹H NMR (DMSO-d₆): δ10.63 (s, NH, 1H), 8.09 (s, NH, 1H), 3.06 (s, C_{1H} , C_{5H} , 2H, $J(W_{2}^{1})=$ 9Hz), 2.20 (s, NCH₃, 3H), 2.12-2.10 (m, C₂₈, C₄₈, 2H), 1.90-1.85 (m, C6H, C7H, 4H), 1.46-1.39 (dd, $C_{2\alpha}$, $C_{4\alpha}$, 2H); Mass, m/z (rel. intensity %): 209 (27), 181 (6), 152 (13), 110 (10), 96 (36), 82 (100), 68 (6); IR (v, KBr, cm⁻¹): 3258.8, 2954.7, 2832.7, 1718.3. Anal. Calcd. for C10H15N3O2: C, 57.40; H, 7.23; N, 20.08 Found C, 57.32; H, 7.18; N 20.38%. N-Isopropylnortropane spirohydantoin³ 3b: Yield 76%; mp. 233°C; ¹H NMR (DMSO-d₆): δ10.64 (s, NH, 1H), 8.10 (s, NH, 1H), 3.54-3.42 (s, C1H, C_{5H}, 2H, J(W ½)=9Hz), 2.87-2.75 (m, C_{9H}, 1H), 2.22-2.09 (dd, C_{2β}, C_{4β}, 2H), 1.92-1.84 (m, C_{6H}, C_{7H}, 4H), 1.35-1.20 (m, C_{2a}, C_{4a}, 2H), 1.06-1.04 (d, CH₃, 6H); Mass, m/z (rel. intensity %): 237 (20), 222 (100), 124 (18), 110 (35), 97 (8), 83 (21), 68 (23), 54 (8). Anal. Calcd. for C12H19N3O2: C, 60.74; H, 8.07; N, 17.71 Found C, 60.52; H, 7.84; N, 18.08%.

N-Carboethoxynortropane spirohydantoin 3c: Yield 77%; mp. 271°C; ¹H NMR (DMSO-d₆): δ 10.79 (s, NH, 1H), 8.37 (s, NH, 1H), 4.16 (s, C_{1H}, C_{5H}, 2H, J(W $\frac{1}{2}$)=9Hz), 4.09-4.02 (q, OCH₂, 2H), 2.12-2.09 (m, C₂₆, C₄₆, 2H), 2.06-2.01 (m, C_{6H}, C_{7H}, 4H), 2.00-1.90 (m, C_{2c}, C₄₀, 2H), 1.22-1.15 (t, CH₃, 3H); Mass, m/z (rel. intensity %): 267 (16), 194 (11), 154 (79), 140 (55), 96 (10), 82 (69), 68 (100), 54 (29); IR (v, KBr, cm⁻¹): 3375.9, 3149.2, 2985.1, 1708.6, Anal. Calcd. for C₁₂H₁₇N₃O₄: C, 53.92; H, 6.41; N, 15.72 Found C, 54.12; H, 6.50; N, 15.87%.

N-FurfuryInortropane spirohydantoin 3d: Yield 87%; mp. 272°C; ¹H NMR (DMSO-d₆): δ10.67 (s, NH, 1H), 8.15 (s, NH, 1H), 7.55 (s, aromatic, 1H), 6.37-6.24 (dd, aromatic, 2H), 3.60 (s, C_{1H}, C_{5H}, 2H, J(W $\frac{1}{2}$)=9Hz), 3.22-3.18 (m, CH₂, 2H), 2.18-2.11 (dd, C_{2β}, C_{4β}, 2H) 2.09-1.91 (t, C_{6H}, C_{7H}, 4H), 1.51-1.44 (m, C_{2α}, C_{4α}, 2H); Mass, m/z (rel. intensity %): 275 (22), 163 (38), 148 (15), 122 (30), 81 (100), 68 (12), 53 (20). Anal. Calcd. for $C_{14}H_{17}N_3O_3$: C, 61.08; H, 6.22; N, 15.26 Found C, 61.35; H, 5.97; N, 15.55%.

N-(p-Methoxyphenyl)nortropane spirohydantoin 3e: Yields 70%; mp. 380°C (dec.); ¹H NMR (DMSO-d₆): δ10.63 (s, NH, 1H), 8.27 (s, NH, 1H), 6.83-6.70 (q, aromatic, 4H), 4.18 (s, C_{1H}, C_{5H}, 2H, J $(W_{2})=9.5Hz$, 3.68 (s, OCH₃, 3H), 2.26-2.18 (dd, C₂₈, C₄₉, 2H), 2.12-1.92 (m, C_{6H}, C_{7H}, 4H), 1.42-1.35 (d, C_{2α}, C_{4α}, 2H); Mass, m/z (rel. intensity %): 301 (73), 281 (41,) 272 (13), 207 (100), 193 (20), 147 (17), 91 (24), 82 (38), 73 (26). *Anal. Calcd.* for C₁₆H₁₉N₃O₃: C, 63.77; H 6.36; N, 13.94 Found C, 64.13; H 5.99; N 14.24%.