Crystal Structure of Dinuclear Molybdenum(VI) Complex Involving trans-Dioxo $\mathrm{Mo}^{\mathrm{VI}} \mathrm{O}_{2}$ Core

Seong-Jong Mo and Bon-Kweon Koo*
Department of Chemistry, Catholic Unversitv of Taegu-IIvosung. Kungsan 713-702, Korea Recemed Februay 19. 1999

The fact that molybdenum-oxygen bonds are present in molybdo enzymes has extensively stimulated research in molybdenum complexes with oxygen enviromments. ${ }^{1}$ This class of compounds is interesting also in the study of problems associated with the trans influence of the oxygen donor atoms. ${ }^{2}$ So far lots of molybdenum(V). (VI) complexes with cis-directed terminal oxygens in the $\mathrm{Mo}_{2} \mathrm{O}_{3}$ - or $\mathrm{Mo}_{2} \mathrm{O}_{4}$-core structures have been reported. ${ }^{3}$ However. those of transdirected oxygens are little known. especially molybdenum(VI) complexes of $\mathrm{Mo}_{2} \mathrm{O}_{4}$-core structure with fransdirected terminal oxygens are very uncommon. ${ }^{+}$As part of our studies on molybdenum(VI) complexes with oxygen. sulfur, and/or nitrogen donor ligands we describe here the synthesis and structure of molybdenmm(VI) complex $\left[\mathrm{Mo}_{2} \mathrm{O}_{4} \text { (sabp) }\right)_{]}$. where sabp is N -salicylidene-2-amino-4- butylphenolate with /Foms-directed teminal oxygens.

Experimental Section

Materials. Moly bdenylacety lacetonate. [MoO_{-}(acac) $]^{7}$ was obtained from Tokyo Kasei Chem. Ind. Co. Ltd. Salicylaldehyde and 2-amino-t-t-butylphenol were obtained from Aldrich Chem. Co. Ltd. The Schiff base was prepared under Ar gas by the literature method. ${ }^{5}$ but it was not isolated from methanol solution. All other chemicals used for this work were reagent grade and were employed without further purification. Reagent grade solvents were dried and distilled before use

Physical measurements. C. H. N. for the complexes were analyed by using a Carlo-Erba EA-IIO6R. The m.p. measurements were performed by using a Haake melting point apparatus. The molar conductances of the complexes were measured by YSI-31 conductivity bridge. The IR spectra of solid samples in KBr were recorded on a Mattson Polaris FT-IR. ${ }^{1} \mathrm{H}$ NMR spectra in DMSO-d ${ }_{6}$ were recorded on a Bruker AM 200 spectrometer and referenced to TMS (internal). Electronic spectra were obtained on a Spectronic Gemeni 2 spectrophotometer. Cyclic Voltammograms were recorded on a Electrochemical Rescarch System 270/6/0 (EG\&G) consisting of PAR 263 Potentiostat/Galyanostat and Electrochemical analysis software 270. The electrochemical studies were conducted in a oxygen-free DMSO solution containing 0.1 M tetracthylammonium perchlorate (TEAP) as supporting electrolyte. We employed a three-

[^0]electrode cell configuration consisting of a platinum working. platinum counter. and silver/silver ion reference electrode.

Preparation of the complexes. [$\left.\mathrm{MoO}_{2}(\mathrm{sabp})(\mathrm{MeOH})\right]$ (1). This compound was prepared by the procedure of literature reported ${ }^{3}$ previously. Yield: $0.21+\mathrm{g}(50 \%)$. mp 171-173 ${ }^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO} \mathrm{O}_{5} \mathrm{Mo}: \mathrm{C} .50 .59: \mathrm{H}, 4.95: \mathrm{N}$, 3.27. Found: C. 50.29; H. 4.88: N, 3.19. Λ_{M} (Mho cm^{2} mol^{-1}): 1.1. UV/Vis. (nmı. $\log \varepsilon$): 428 (3.63), 406 (3.61). 311 (4.24). Significant infrared bands (cm^{-1}): 909 (v_{Mto} (). alsym),
 $\left.d_{6}\right): \delta 1.33$ (s. $\left.9 \mathrm{H} .-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .3 .17$ (d. $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OH}\right) .4 .09(\mathrm{q}$. 1H. $\mathrm{CH}_{3} \mathrm{OH}$). $6.73-7.82$ (in. $7 \mathrm{H} . \mathrm{ArH}$). 9.32 (s. $1 \mathrm{H} . \mathrm{N}=\mathrm{CH}$).
$\left[\mathrm{Mo}_{2} \mathrm{O}_{4}(\mathrm{sab})_{)_{2}}\right]$ (2). The excess amount of complex 1 was dissolved in dichloromethane (10 ml) to give a saturated solution. The deep red solution was filtered and left undisturbed at room temperature. After 2-3 days transparent red blocks suitable for crystallographic study had crystallized. The crystal was filtered off. washed with ether. and dried under vacuum. Yield: $0.14 \mathrm{~g}(35 \%) . \mathrm{mp} 261^{\circ} \mathrm{C}$. Anal. Calcd. for $\mathbf{C}_{34} \mathrm{H}_{34} \mathbf{N}_{2} \mathbf{O}_{8} \mathbf{M o}_{2}$: C. 51.66 : H, 4.33: N, 3.53. Found: C. 51.27: H. 4.35: N. 3.52. $\Lambda_{\mathrm{V}}\left(\right.$ Mho $\left.\mathrm{cm}^{2} \mathrm{~mol}^{-1}\right): 1.3$. UV/vis. (ımı. $\log \varepsilon$): 428 (3.99). 356 (4.30), 314 (+.64). Significant
 (v, v). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz} . \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta 1.33$ (s. 9 H . - $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 6.75-7.83$ (min, 7H. ArH), 9.33 (s. $1 \mathrm{H} . \mathrm{N}=\mathrm{CH}$).

Crystal structure determination of 2 . X-ray-quality crystals of 2 . approximately $0.12 \times 0.16 \times 0.16 \mathrm{~mm}$, were obtained by slow cyaporation of a saturated dichloromethane solution of the brown powder and mounted in glass capillary. Mcasurement was made on a Enraf-Nonius CAD4 TURBO diffractometer using Mo-K K_{α} radiation ($\lambda=0.71069 \mathrm{~A}$) monochromatized from a graphite crystal whose diffraction vector was parallel to the diffraction vector of the sample and anode generator. Preliminary experiments for the cell parameters and orientation matrix for crystal was carricd out by least-squares refinement. using the setting angles of 25 carefully centered reflections in the range $20^{\circ}<2 \theta<35^{\circ}$. Diffraction intensity was collected at a constant temperature of $20(1)^{\circ} \mathrm{C}$ using the $\omega-2 \theta$ scan technique with variable scan speeds. Omega scans of scyeral intense reflections were made prior to the data collection to optimize the proper scan widit for crystal.

The intensities of three representative reflections which were measured after esery 150 reflections remained constant throughout data collection indicating erystal and clectronic stability for crystals. Of the reflections collected. those with

Table 1. Crystallographic Data and Intensity Collection for Complex 2

Impirical formula	$\mathrm{C}_{34} \mathrm{H}_{3-4} \mathrm{~N}_{2} \mathrm{O}_{8} \cdot \mathrm{Mo}_{2}$
$i_{\text {r }}$	790.53
Crysta system	monoclinic
Space group	C2ctitis)
$\%$	4
Cell parameters	
${ }^{\text {a }}$ (A)	11.659(2)
$b(A)$	$10.666(2)$
$c(A)$	26.664(4)
b (o)	101.37(1)
$\mathrm{r}^{\prime}\left(A^{3}\right)$	3251(1)
$D_{\text {calc }}$ ($\mathrm{g}^{\prime} \mathrm{cm}^{\text {i }}$)	1.615
$\mu\left(\mathrm{cm}{ }^{\text {' with Mo-K }}\right.$ ($)$	8.0
Transmission factort (\%)	97.8370-99.8458
Scan type	$\omega^{13}-2 \theta$
Scan width (ω) (deg)	$0.8910 .60 \tan (\theta)$
$2 \theta_{\text {maxa }}$ (deg)	52.64
Vo. of reflections measured	3665
No. of reflections observed $(\mathrm{I}>3 \sigma(\mathrm{l}))$	2570
$F(000)$	1600
No. of variable	259
Discrepancy indices	
R^{p}	0.031
$R w^{\text {b }}$	0.041
Goodness of fill indicater ${ }^{\text {f }}$	1.352
Maximum shill in linal cycles	less than 0.01

"A semi-emporical absorption correction was spplied. ${ }^{n} R-\Sigma\left|F_{0}-\left|F_{s}\right|\right.$ $\Sigma F_{n} .{ }^{c} R_{\mathrm{u}}=\left[\left(\Sigma \mathrm{wd}\left(\mathrm{F}_{0}\left|\mathrm{~F}_{\mathrm{c}}\right|\right)^{2} \Sigma \mathrm{w}\left(\mathrm{F}_{0}^{-2}\right)\right]^{1 / 2}\right.$. where $\mathrm{w}=\left[\sigma\left(\mathrm{F}^{-2}\right)\right]^{-1}$. "Fstimated standard deviation of an observation of unit weight: $\left[\left(2 \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}-\mathrm{F}_{\mathrm{c}} \mid\right)^{-1}\right.\right.$; $\left.\left(N_{0}-N_{1}\right)\right|^{[5]}$, where $N_{0}-$ Number of observations and $V_{2}-$ Vumber of variables.
$I>3 \sigma(I)$ were used for structure determination. The structure was solved by direct method (MULTAN) ${ }^{6}$ and subsequent Fourier difference technique, and refined on F^{2} (program MolEN) by full-matrix least-squares cycles. An absorption correction (Ψ-scan) was applied to all data. All non-hydrogen atoms were readily located and relined with anisotropic thermal parameters. Hydrogen atoms were relined isotropically in the final refinement cycles. The data collection and structure solution parameters are listed in Table 1, together with standard discrepancy indices R and R_{w}.

Results and Discussion

The reaction of $\mathrm{MoO}_{2}(\mathrm{acac})_{2}$ with the Schifl base ligand derived from salicylaldehyde and 2-amino-4-t-butylphenol in methanol solution gave a monomeric molybdenum(VI) complex 1, and then if a saturated dichloromethane solution of the complex 1 was allowed to evaporate slowly in air dimeric molybdenum(VI) complex 2 suitable for crystallographic study yielded. The details for the preparation and identilications of complex 1 were described previously. ${ }^{8}$ The molar conductivity of complex 2 in dimethylsulfoxide showed 1.3 Mho $\mathrm{cm}^{2} \mathrm{~mol}^{-1}$ similar to mononuclear complex 1. The IR spectra of complex 2 showed a intense absorption peaks at 949 and $760 \mathrm{~cm}^{-1}$ belong to the $\mathrm{Mo}-\mathrm{O}$

Figure 1. Cyclic volammograms $\left(\sim 1 \times 10^{-3} \mathrm{M}\right.$ in J MSO 5.0 .0 I M TEAP) of complex $I(\cdots)$ and $2(-)$ at scan rate of 50 mVs .
(terminal) and to the Mo-O (bridging) stretching frequencies, respectively. The peak at $1604 \mathrm{~cm}^{-1}$ is assigned to the azomethine $\mathrm{C}^{-} \mathrm{N}$ stretching vibration. Lower frequency shift of the vibration compared to $1619 \mathrm{~cm}^{-1}$ of the free ligand indicates that the azomethine nitrogen coordinates to the molybdenum moiety. The ${ }^{1} \mathrm{H}$ NMR spectra of the complex 2 showed the proton resonances for each of the phenolic aromatic, 4-t-butyl, and azomethine group at 6.75-7.82, 1.33, and 9.33 ppm . However, the proton resonances of methyl, OH group of methanol in the complex 1 are disappeared in the complex 2 . The $U V / V$ is spectrum of the complex 2 was recorded in the range of $200-700 \mathrm{~nm}$ and showed the same spectral pattern as complex $\mathbf{1}$. The absorption band at 428 nm (log-4.63) due to the charge transfer transition from oxygen orbital to a metal d-orbital was observed."

Electrochemical studies were carried out by cyclic voltammetry using a Pt working electrode and $\mathrm{NEt}_{4} \mathrm{ClO}_{4}$ as supporting electrolyte in DMSO solvent. The complexes exhibited two successive reductive responses in the potential range -1.4 to -1.8 V as shown in other dioxomolybdenum(VI) complexes reported previously (Figure 1). ${ }^{16}$ The reductions are irreversible. Though no precise assignments for the each of reduction waves are accomplished. it is important to note here that the cyclic voltammogram of the complex 2 in DMSO is identical with that of the complex 1. This observation indicates that both complexes have essentially similar electrochemical behavior. On the basis of results for electronic and electrochemical studies, it was assumed that complex 2 has dissociated into mononuclear complex 1 in the solution.

Crystal structure of $\left.\mid \mathrm{Mo}_{2} \mathrm{O}_{4}(\mathbf{s a b})_{2}\right)_{2}$. Atomic coordinates are listed in Table 2 and selected bond distances and angles in Table 3. The molecular structure is shown in Figure 2.

Although a number of di-oxo-bridged molybdenum complexes are reported to date, cis-species of two terminal oxygen atoms are domain. However, in the present complex 2 the oxygen atoms $O(1)$ and $O(1)^{\prime}$ are characteristically oriented toward trans-position. For complexes having planar trons-di- μ-oxo bridges, isomers having C_{1} or C_{2} symmetry should in general be theoretical possibilities. The present

Table 2. liractional Positional Parameters and Displacement Parameters of Non-Hydrogen Atoms for Complex 2

Alom	x	y	z	$B \times\left(A^{2 a}\right.$
Mo(1)	$0.22580(2)$	$0.14225(3)$	$0.54148(1)$	$2.591(5)$
$O(1)$	$0.1478(2)$	$0.0830(3)$	$0.5826(1)$	$4.12(6)$
$O(2)$	$0.1559(2)$	$0.2797(2)$	$0.5171(1)$	$3.05(5)$
$O(3)$	$0.1763(2)$	$0.0307(3)$	$0.4852(1)$	$3.47(6)$
$O(4)$	$0.3467(2)$	$0.2254(2)$	$0.5913(1)$	$2.91(5)$
$\mathrm{N}(1)$	$0.3765(3)$	$0.0080(3)$	$0.5558(1)$	$2.31(5)$
$\mathrm{C}(1)$	$0.3999(3)$	$-0.0821(3)$	$0.5265(1)$	$2.42(6)$
$\mathrm{C}(2)$	$0.3256(3)$	$-0.1189(3)$	$0.4795(1)$	$2.48(7)$
$\mathrm{C}(3)$	$0.3621(3)$	$-0.2197(4)$	$0.4521(1)$	$3.02(7)$
$\mathrm{C}(4)$	$0.2920(3)$	$-0.2626(4)$	$0.4081(2)$	$3.50(8)$
$\mathrm{C}(5)$	$0.1838(3)$	$-0.2085(4)$	$0.3909(2)$	$3.76(9)$
$\mathrm{C}(6)$	$0.1455(3)$	$-0.1112(4)$	$0.4166(2)$	$3.45(8)$
$\mathrm{C}(7)$	$0.2165(3)$	$-0.0647(3)$	$0.4608(1)$	$2.66(7)$
$\mathrm{C}(8)$	$0.4308(3)$	$0.1543(3)$	$0.6211(1)$	$2.53(7)$
$\mathrm{C}(9)$	$0.4957(3)$	$0.1960(4)$	$0.6668(2)$	$3.08(7)$
$\mathrm{C}(10)$	$0.5775(3)$	$0.1174(4)$	$0.6943(2)$	$3.21(8)$
$\mathrm{C}(11)$	$0.6001(3)$	$-0.0031(4)$	$0.6782(1)$	$2.68(7)$
$\mathrm{C}(12)$	$0.5364(3)$	$-0.0416(3)$	$0.6312(1)$	$2.49(7)$
$\mathrm{C}(13)$	$0.4517(3)$	$0.0361(3)$	$0.6032(1)$	$2.29(6)$
$\mathrm{C}(14)$	$0.6919(3)$	$-0.0864(4)$	$0.7109(1)$	$3.29(8)$
$\mathrm{C}(15)$	$0.6771(4)$	$-0.0881(5)$	$0.7662(2)$	$5.5(1)$
$\mathrm{C}(16)$	$0.8124(4)$	$-0.0349(5)$	$0.7097(2)$	$5.6(1)$
$\mathrm{C}(17)$	$0.6876(5)$	$-0.2197(5)$	$0.6904(2)$	$5.8(1)$

"Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter detined as $43\left[a^{2} B(1.1)+b-(2.2)+\right.$ $c^{2} B(3,3)+a b(\cos \gamma B(1,2)-\alpha c(\cos \beta) B(1,3)-b c(\cos \alpha) B(2.3)]$.

Table 3. Selected Bond Distances (A) and Angles (deg) for Complex 2

(a) Distances			
$\mathrm{Mo}(1)-\mathrm{O}(1)$	$1.680(3)$	$\mathrm{Mo}(1)-\mathrm{N}(1)$	2.241(3)
$\mathrm{Mo}(1)-\mathrm{O}(2)$	1.740(2)	O(3)-C(7)	$1.341(5)$
$\mathrm{Mo}(1)-\mathrm{O}(2)$	$2.42603)$	O(4)-C(8)	1.363(4)
Moil -O(3)	1.913(3)	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.301(5)$
$\mathrm{Mol} 1 \mathrm{j}-\mathrm{O}(4)$	1.95093	$\mathrm{Mo}(1) \cdots \mathrm{Mo}(1)^{*}$	$3.314(4)$
(b) Angles			
$\mathrm{O}(1) \mathrm{Mo}(1) \mathrm{O}(2)$	106.7(1)	O(2)-Mo(1)-(4)	95.4(1)
$\mathrm{O}(1) \mathrm{Mo}(1) \mathrm{O}(2)$	177.6(2)	O(2)-Mo(1)-N(1)	153.7(1)
$\mathrm{O}(1) \mathrm{Mo}(1) \mathrm{O}(3)$	$99.2(1)$	O(3)-Mo(1)-O(4)	152.0(1)
$\mathrm{O}(1) \mathrm{Mo}(1) \mathrm{O}(4)$	$97.9(1)$	O(3)-Mo(1)-N(1)	$80.8(1)$
$\mathrm{O}(1) \mathrm{Mo}(1)-\mathrm{N}(1)$	99.9 (1)	O(3)-Mo(1)- (2)	$80.2(2)$
O(2)-Mo(1)-O(2)	75.9(2)	O(4)- $\mathrm{Mo}(1) \mathrm{O}(2){ }^{\text {c }}$	81.6(2)
$\mathrm{O}(2) \mathrm{Mo}(1)-\mathrm{O}(3)$	100.6(1)	$\mathrm{O}(4) \mathrm{Mo}(1) \mathrm{N}(1)$	74.8(1)

and other structure determinations ${ }^{11}$ show a predominance of the former type C_{i} symmetry. The structure of complex 2 consists of a dinuclear. doubly-bridged [$\mathrm{Mo}_{2} \mathrm{O}_{4}$ (Sabp) $)_{2}$]. As will be seen from Figure 2. each molybdenum atom is in a distorted-octahedral coordination enviromment being bonded to three functional groups. ONO of a Sabp ligand and to two bridging and one terminal oxygen atoms. Each ligand develops a live- and six-membered ring on one molybdenum center. The rings are excellent individual planes but there is $14.1(4)^{\circ}$ fold at their intersection. Due to ligand rigidity. the MoO옹 N_{1} coordination spheres are subject to considerable
distorted octahedral. with the bridging oxygens $O(2)$ and $O(2)^{\prime}$ occupying the edge positions. Thus. the geometry around $\mathrm{Mo}(\mathrm{VI})$ center deviates from the ideal octahedral values of 90° and 180° (Table 3). The plane $\mathrm{Mo}(1) \mathrm{O}(2) \mathrm{O}(2)^{\prime}$ and $\mathrm{Mo}(\mathrm{l}) \mathrm{O}(1) \mathrm{N}(1)$ fragment constitute a very mediocre planes. respectively and their dihedral angle is $5.9(1.0)^{\prime \prime}$. indicating that the fragment $\mathrm{O}(1) \mathrm{O}(2) \mathrm{O}(2)^{\prime} \mathrm{N}(1)$ around $\mathrm{Mo}(\mathrm{VI})$ center is approxymately planarity. The $\mathrm{Mo}(1) \cdots$ $\mathrm{Mo}(1)^{\prime}$ distance is $3.314(4)$ A. which is similar to that of typical dioxo-bridged Mo(Vl) complexes. ${ }^{1=}$ Owing to the trans influence of the terminal oxo. the $\mathrm{Mo}(1)-\mathrm{O}(2)^{\prime}$ and $\mathrm{Mo}(1)^{\prime}-$ $O(2)$ distances (2.426(5) A) are very longer than those remaining both bonds ($1.740(2) \mathrm{A})$ trans to the nitrogen atom of ligand. This value is also longer than phenolic oxygen $\mathrm{Mo}(1)-\mathrm{O}(3)$ and $\mathrm{Mo}(1)-\mathrm{O}(4)$ distances (1.913(3) A and $1.950(3)$ A. respectively). The aromethine $\operatorname{Mo}(1)-\mathrm{N}(1)$ distance ($2.241(3) \mathrm{A})$ is typical of relating complexes. ${ }^{13}$

Supplementary material available. Complete listings of atomic coordinates. isotropic and anisotropic thermal parameters. bond distances and angles (52 pages) and calculated and observed structure factors (28 pages) for complex 2. The supporting matcrials will be given upon your request to the corrcsponding author.

References

1. (a) Stiefel, E. I.: Miller, K. F.: Bruce, A. E.: Pariyadath, N.: Ileinecke, J.: Corbin, J. L.: Berg, I. M.: Hodgson, K. O. In Molyhdemom Chemistry of Biological Significance: Newton, W. E., Otsuka, S., Eds: Plenum: New York; 1980: p 279 and rels therein. (b) Wentworth, R. A. D. Coond. (hem. Rev: 1980. 18, 1 and refs therein.
2. Kamenar, B.: Kompar-Colig, B.: Cindric, M.: Penavic, M.: Strukan. N. I. (hem. Soc. Dallon Trans. 1992, 2093 and relis therein.
3. Stielel. F. I. Progress in Horganic (hemistry I ippard, S. I., Ed.: John Wiley \& Sons: New York, 1977: Vol. 22, pp 1-223 and refs. therein.
4. Mckee, V.: Wilkins, C. J. J. Chom. Soc., Daton Trans. 1987, 523.
5. Jang, Y. J.: Mo, S. J.: Koo, B. K. Bull. Korean Chem. Soc: 1998, 19, 1124.
6. Main, P. Fiske S. J.: Hull. S. F.: I exsinger T.: Germain, G.: Deckerg, T. P: Woolison, M. M. MTDTAN 80: University of York: 1980
7. MolFN, An Interactive Stracture Sohntion Procedure: Enral-Nenius: Delft. Netherlands: 1990
8. Tang, Y. J. Mo, S. J.: Koo, B. K. Bull. Korean (hem. Soc. 1998, 19, 587.
9. (a) Chaudhury. M. J. Chem. Soc, Dathon Tions. 1984. 115. (b) Maurya. M. R.: Antony, D. C.: Gopinathan. S.: Puranik, V. G.: Tavale S. S. T. Gopinathan. C. Bull. Chem. Soc. Jpm. 1995. 68, 2847.
10. Purohit, S.: Koley, A. P.: Prasad, L. S.: Manoharan. P. T: Ghosh, S.: Inorg (hom. 1989, 28, 3735
11. (a) Knobler, C. P.: Penfold, B. R: Robinson, W. T: Wilkins, C. .T. Acta (rewt 1981, B37, 942. (b) Chew C. K.: Penfold, B. R. J. (fyst. Mol. Situct., 1975, 5, 413
12. MeKee, V: Wilkins, C. I. J. (hem. Soc. Dalton Trans., 1987, 523

[^0]: Who whom correspondence should be sent. Phone: +82-53-8503782, Fax: $+82-53-850-3337$, F-mail: bkeoodenth cataeguac. kt

