Electrocatalytic Reduction of Dioxygen by New Water Soluble Cobalt(II) Tetrakis-(1,2,5,6-tetrafluoro-4-*NN'N''*-trimethylanilinium)-β-octabromoporphyrin in Aqueous Solutions

Eun Mi Choi, Haesang Jeong, Duck Hee Park, Yong-Kook Choi, and Seungwon Jeon*

Department of Chemistry and Institute of Basic Science, Chonnam National University, Kwang-ju 500-757, Korea Received April 3, 1999

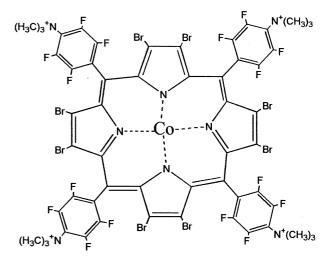
New water soluble and highly electron deficient cobalt(II) tetrakis-(1,2,5,6-tertrafluoro-4-*NN'N*"-trimethylanilinium)- β -octabromoporphyrin [Co^{II}(Br₈TTFP)(Y)₂] was synthesized and used for the electrocatalytic reduction of dioxygen. The first reduction of synthesized [Co^{II}(Br₈TTFP)(Y)₂] involves one electron process to give metal centered [Co^I(Br₈TTFP)(Y)₂]. The reduction of potential [$E_{II2} = -0.32$ V] of [Co^{II}(Br₈TTFP)(Y)₂] shifts positively 370 mV compared with that of [Co^{II}(TTFP)(Y)₂] due to the substituted bromide to β -pyrrole positions. The electrochemically reduced [Co^I(Br₈TTFP)(Y)₂] binds dioxygen and catalytically reduces it to HOOII by 2e transfer. Cyclic and hydrodynamic voltammetry at a glassy carbon electrode in dioxygen-saturated aqueous solutions are used to study the electrocatalytic pathway.

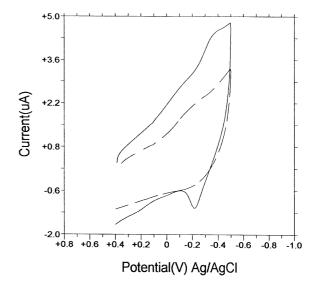
Introduction

The evolution of new catalysts for multielectron reduction of dioxygen has receive a great deal of attention for practical applications such as biological reactions, as well as for fuel cells and air batteries over the past two decades.¹⁻¹³ Porphyrins or phthalocyanines of cobalt and iron are known as effective catalysts for dioxygen reduction. Dioxygen is reduced to hydrogen peroxide or water via 2e⁻ or 4e⁻ transfer by effective catalyst. Among the various metalloporphyrins, the cobaltporphyrins have been well studied. It has been reported that water-soluble bisporphyrin structures¹⁸⁻²⁴ or monomeric cobaltporphyrins coordinated with ruthenium complexes¹⁴⁻¹⁷ act as effective catalysts for the 4e⁺ reduction of dioxygen to water in acidic solutions at a pyrolytic graphite electrode. The electrocatalytic reduction of dioxygen involves the binding of dioxygen to the Co(II) species followed by the reduction of the adduct. The metalloporphyrins possessing halogen substituents on the ring periphery are known to be distorted structures, positively shifted potentials, and robust catalysts for organic oxidation. Recently it was reported that cobalt tetrakis-(N-trimethyl-pyridyl)- β octabromoporphyrin [Co(Br₈TMpyP)] catalyzed the reduction of dioxygen.²⁵ The catalytic mechanism by Co (Br₈TMpyP) as a catalyst involves the binding of dioxygen to Co(I) species to give Co(I)- O_2 . However, the catalytic mechanism by Co(Br₈TPPS) possessing negative charges involves the binding of dioxygen to Co(II) species to give Co(II)-O₂ due to the dependence upon the reduction potential of Co(II)/Co(I) couple.26 It was also suggested that these cobaltporphyrins do not adsorb on the glassy carbon electrode surface. Previously, we reported²⁷ that dioxygen is reduced electrocatalytically to HOOH by Coll(TTFP)(Y)2 as a catalyst, and then the generated HOOH is reduced to water by $Co^{I}(TTFP)(Y)_{2}$ in the present work, electrocatalytic reduction of dioxygen in dioxygen saturated aqueous solutions has been studied by cyclic voltammetry and hydrodynamic voltammetry at a glassy carbon electrode using new water soluble cobalt tetrakis-(1,2,5,6-tetrafluoro-4-*NN'N"*-trimethylanilinium)- β -octabromoporphyrin [Co^{II}(Br₈TTFP)] (Figure 1). The electron withdrawing effects of -octabromo and o, m-fluoro substituents of Co^{II}(Br₈TTFP) have been expected to show a positive shift in the potential of dioxygen reduction. Co(I) species generated from the reduction of Co^{II}(Br₈TTFP) before the dioxygen reduction is useful for the electrocatalytic reduction of dioxygen in various pH solutions. The electrochemical results will be discussed to determine the mechanism of the catalytic reduction of dioxygen.

Experimental Section

Synthesis of $Co^{II}(Br_8TTFP)$. The CF₃SO₃⁻ salt of tetrakis-(1,2,5,6-tetrafluoro-4-*NN'N''*-trimethylanilinium) porphyrinato cobalt [Co(TTFP)], which is soluble in aqueous




Figure 1. Structure of new water soluble cobaltporphyrin employed in the present study.

solutions in the entire pH range, was procured from Mid-Century Chemicals Co., USA. Co(TTFP) (50 mg) was dissolved in methanol (50 mL) and chloroform (50 mL), and liquid bromine (0.5 mL) was added to the Co(TTFP) solution while stirring the solution vigorously. The reaction mixture was stirred over a period of 72 hours to give the brominated product [Co(Br₈TTFP)] at room temperature. During the progress of the reaction, Co(Br₈TTFP) was precipitated in the solution. The precipitate was separated from the solution by filtering and washed with chloroform continuously until traces of adsorbed free bromine were removed from the precipitate. The resulting products were subjected to silica gel column eluting with a mixture of chloroform/ methanol. The ¹H NMR spectrum of Co(Br₈TTFP) revealed no peak corresponding to the pyrrole protons, suggesting that Co(TTFP) (β -pyrrole protons: 9.69) was completely brominated to Co(Br₈TTFP). The UV-visible spectrum of Co(Br₈TTFP) in H₂O showed λ_{max} of 450 nm, 570 nm and 658 nm, and that of Co(TTFP) in H₂O λ_{max} 424 nm and 538 nm.

Instrumental. The voltammetric measurements were accomplished with a three electrode potentiostat [Bioanalytical Systems (BAS) 100B/W]. A platinum-wire electrode separated from the analyte compartment by a medium porosity glass frit was used as an auxiliary electrode. A Ag/AgCl electrode supplied by BAS was used as a reference electrode, with a potential is approximately -45 mV relative to a saturated calomel electrode (SCE). A 3.0 mm diameter glassy carbon was employed as a working electrode for the redox reactions of cobaltporphyrin. Working electrode surfaces were highly polished with alumina paste before each experiment. Absorption spectra were recorded on a Jasco V-530 spectrophotometer equipped with an HMC-358 constant temperature cell holder, and an optical path length is 0.2 mm. Rotating disk experiments were conducted using a BAS RDE-1 instrument. Rotating ring-disk experiments were conducted using a AFRDE-5 rotator (Pine Instrument Company). A glassy carbon disk and glassy carbon disk/ platinum ring electrodes were used. The ring collection efficiency (N - 0.17) was determined using a solution of ferrocene. The dioxygen concentration in O₂-saturated solutions was 1.2 mM at room temperature. All reported potentials were with respect to a Ag/AgCl electrode. Sulfuric acid (Fischer scientific), potassium hydroxide (Alfa ultra pure), potassium nitrate (Wako pure), and buffer solutions (Fischer scientific) were used as received. All solutions for electrochemical and spectroscopic experiments were prepared using doubly-distilled deionized water.

Results and Discussion

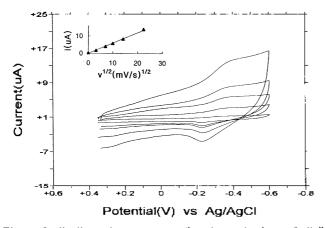
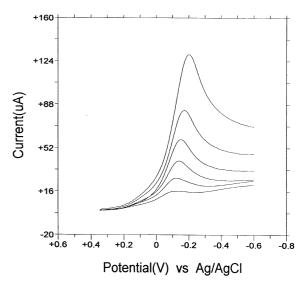

Electroreduction of Co^{II}(Br₈TTFP)(Y)₂ at various pHs. Co^{II}(Br₈TTFP)(Y)₂ bears sixteen fluorides on the ortho and meta positions of phenyl groups bonded to *meso* positions of the porphyrin ring and four positive charges on the trimethylanilinium entities and eight bromides to β -pyrrole positions (see Figure 1). Figure 2 shows cyclic voltammetric curves

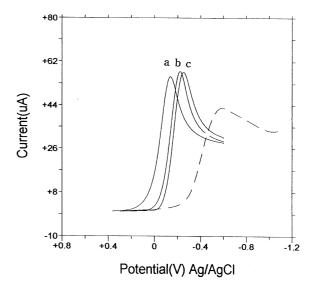
Figure 2. Cyclic voltammograms for the reduction of Co^{II} (Br₈TTFP)(Y)₂ in 0.05 M H₂SO₄ aqueous solution on the glassy carbon (100 mV/s scan rate), for dissolved Co^{II} (Br₈TTFP)(Y)₂, B; for dissolved 0.5 mM Co^{II} (Br₈TTFP)(Y)₂ (solid line) and for adsorbed Co^{II} (Br₈TTFP)(Y)₂ (dashed line).

(CVs) recorded at a glassy carbon electrode in a 0.5 mM $Co^{H}(Br_8TTFP)(Y)_2 \{Y = H_2O \text{ or } HO \}$ acidic solution. There are two cathodic responses, at -0.11 V and -0.37 V, for Coll(Br₈TTFP)(Y)₂ dissolved in the 0.05 M H₂SO₄ aqueous solution (the solid line of Figure 2), but the CV of adsorbed Co^{II}(Br₈TTFP)(Y)₂ on the glassy carbon reveals one cathodic peak at -0.14 V in a pure 0.05 M H₂SO₄ solution (the dashed line of Figure 2). When it is compared with CVs of dissolved and adsorbed Co^{II}(Br₈TTFP)(Y)₂, the peak near -0.11 V measured from dissolved Co^{II}(Br₈TTFP)(Y)₂ evidently arises from adsorbed Co^{II}(Br₈TTFP)(Y)₂. The peak at -0.11 V shown in the solid line of Figure 2 matches the peak obtained in the dashed line of Figure 2. The peak at -0.37 V shown in the solid line of Figure 2 can be attributed to the reduction of Co^{II}(Br₈TTFP)(Y)₂ dissolved in the 0.05 M H₂SO₄ solution due to the absence of its peak in the adsorbed Co^{ll}(Br₈TTFP)(Y)₂. The difference in the reduction potential between adsorbed and dissolved Coll (Br₈TTFP)(Y)₂ suggests unusually favorable interactions between the electrode surface and the reduced cobalt center. The half-wave potential $E_{1/2}$ (-0.32 V) of the first reduction for adsorbed Co^{II}(Br₈TTFP)(Y)₂ is comparable to the $E_{1/2}$ (-0.31 V) of the first reduction for Co^{II}/Co^I couple of cobalt tetrakis-(*N*-methylpyridyl)- β -octabromoporphyrin

Co^{II}(Br₈TMpyP) in 0.05 M H₂SO₄ solution.²⁵ The spectrum of reduced form generated from the reduction of Co^{II} (Br₈TTFP)(Y)₂ is obtained by holding the potential of the working electrode at -0.5 V under argon atmosphere in the 0.05 M H₂SO₄ solution. The optical spectra of the reduced form exhibits a Soret band maximum at 432 nm and Q bands at 558 nm and 579 nm. The change of Soret band from 450 nm to 432 nm indicates that the absorbance at 432 nm is a result of Co^{II}(Br₈TTFP)(Y)₂ obtained from metal-centered 1e reduction of Co^{II}(Br₈TTFP)(Y)₂.¹⁰ Therefore the first


Figure 3. Cyclic voltammograms for the reduction of Co^{11} (Br₈TTFP)(Y)₂ in 0.05 M H₂SO₄ aqueous solution on the glassy carbon as a function of scan rate (10, 50, 100, 200, 500 mV/s). The inside plot represents the analysis of peak current vs (scan rate)^{1/2} for the couple of Co(II)/Co(I).

reduction of $Co^{II}(Br_8TTFP)(Y)_2$ to $Co^I(Br_8TTFP)(Y)_2$ may be metal centered and involves one electron process.


Likewise there are two cathodic responses at -0.15 V and -0.37 V for $Co^{II}(Br_8TTFP)(Y)_2$ dissolved in a pH = 7 buffer solution containing 0.2 M KNO₃, but one reduction peak at near -0.15 V for $Co^{II}(Br_8TTFP)(Y)_2$ adsorbed on a glassy carbon electrode. And there are two cathodic responses at -0.17 V and -0.38 V for $Co^{II}(Br_8TTFP)(Y)_2$ dissolved in a pH = 10 buffer solution but one reduction peak at near -0.17 V for $Co^{II}(Br_8TTFP)(Y)_2$ adsorbed on a glassy carbon electrode. The peak currents of the first reduction of dissolved $Co^{II}(Br_8TTFP)(Y)_2$ increase linearly with the square root of the scan rate at pH = 1, 7, and 10, indicating a diffusion controlled process (see Figure 3).

Electrocatalytic reduction of dioxygen by Co^{II} (Br₈-**TTFP**)(**Y**)₂. The presence of $Co^{\parallel}(Br_8TTFP)(Y)_2$ in the 0.05 M H₂SO₄ solution results in a positive shift of the reduction potential for dioxygen reduction, and this process occurs at $E_{pc} = -0.13$ V. The reduction potential of dioxygen in the presence of Co¹¹(Br₈TTFP)(Y)₂ is shifted by 0.7 V in a positive direction compared with the shift in the absence of $Co^{II}(Br_8TTFP)(Y)_7$ at 100 mV/s. The effect of scan rate on the peak current for the reduction of dioxygen in the presence of $Co^{II}(Br_8TTFP)(Y)_2$ in the 0.05 M H₂SO₄ solution is shown in Figure 4. CVs for reduction of dioxygen with $Co^{II}(Br_8TTFP)(Y)_2$ adsorbed on the glassy carbon electrode in pure 0.05 M H₂SO₄ solution are identical to CVs measured in dissolved Co^{II}(Br₈TTFP)(Y)₂ in 0.05 M H₂SO₄ solution. The linearity shown in the plot of the peak current vs the square root of the scan rate indicates that electrocatalytic reduction of dioxygen is a diffusion controlled process when the dioxygen concentration is held constant. The first reduction process corresponding with the Co^{II}/Co^I couple upon adsorption of Co^{II}(Br₈TTFP)(Y)₂ on the glassy carbon electrode surface is located at $E_{px} = -0.11$ V at 100 mV/s, and the electrocatalytic reduction peak potential of dioxygen is -0.13 V at the same scan rate.

Meanwhile, Figure 5 illustrates the effect of pH on the

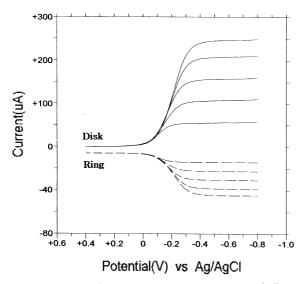


Figure 4. Cyclic voltammograms for the reduction of dioxygen in the presence of $Co^{0}(Br_{8}TTFP)(Y)_{2}$ in 0.05 M H₂SO₄ solution at different scan rates (10, 20, 50, 100, 200, 500 mV/s) on a glassy carbon electrode.

Figure 5. The effect of pH for the reduction potential of dioxygen in the presence of $Co^{II}(Br_8TTFP)(Y)_2$ **a**: pH=1, **b**: pH=7, **c**: pH=10, dashed line: bare electrode at pH=1 in the absence of Co^{II} $(Br_8TTFP)(Y)_2$.

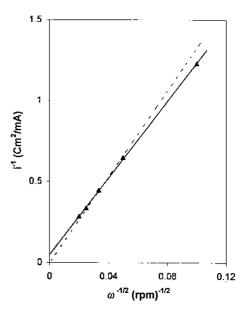

reduction potential of dioxygen in the presence of Co^{II} (Br₈TTFP)(Y)₂. The reduction potential of dioxygen in the presence of Co^{II} (Br₈TTFP)(Y)₂ coincides with the reduction potential of Co^{II} (Br₈TTFP)(Y)₂ adsorbed on a glassy carbon electrode in various pII solutions. This agreement indicates that the potential governing dioxygen reduction is the reduction potential of Co^{II} (Br₈TTFP)(Y)₂ to Co^I (Br₈TTFP)(Y)₂, and this is consistent with an EC mechanism that has been proposed for other water-soluble metalloporphyrins.²⁵ The reduction potential of dioxygen at bare electrode in the absence of Co^{II} (Br₈TTFP)(Y)₂ is almost the same in various pII solutions (pH – 1, 7, 10). Based on these observations, it is suggested that Co^I (Br₈TTFP)(Y)₂ generated from adsorbed Co^{II} (Br₈TTFP)(Y)₂ is an active catalyst in the electrocata-

Figure 6. RRDE voltammograms ($E_r = \pm 1.0$ V) of dioxygen reduction for an dioxygen-saturated solution of Co^{II}(Br₈TTFP)(Y)₂ in 0.05 M H₂SO₄ solution at 10 mV/s scan rate, the rotation rates are 100, 400, 900, 1600, and 2500 rpm.

lytic reduction of dioxygen to HOOH.

Further investigations using hydrodynamic voltammetry {rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE)} confirm the formation of hydrogen peroxide as a major product of dioxygen reduction by reduced form $Co^{I}(Br_{8}TTFP)(Y)$, RRDE voltammograms obtained from the dissolved solution of Co^{II}(Br₈TTFP)(Y)₂ are shown in Figure 6. The disk potential is scanned from ± 0.6 V to ± 1.0 V at 10 mV/s in dioxygen-saturated 0.05 M H₂SO₄ solution while the potential of the ring electrode is maintained at ± 1.0 V. A Levich plot of the disk limiting current against the square root of rotation rate is linear, indicating the occurrence of a diffusion controlled reaction. Ring currents corresponding with the formation of HOOH have been observed under these conditions. The result indicates that the major product of dioxygen reduction by Col(Br₈TTFP)(Y)₂ is HOOH (almost 100%) by 2e transfer. The yield of HOOH was calculated by the equation, $%HOOH - (-i_{c}/Ni_{d})/100$ where i_{t} and i_{d} are the ring and disk limiting currents, and N is the collection coefficient. Koutecky-Levich plots for dioxygen reduction catalyzed by Co¹(Br₈TTFP)(Y)₂ are shown in Figure 7. The dashed line was calculated for the diffusionconvection limited reduction by two electrons.²² The solid line is obtained from the plateau current of curves. The number of electrons transferred estimated from the slope of Koutecky-Levich plot reveals that the dioxygen reduction by $Co^{I}(Br_{8}TTFP)(Y)_{2}$ occurs in two-electron process. Limiting currents obtained from the plateau result from the electrocatalytic reduction of dioxygen to HOOH by Co^I(Br₈TTFP) (Y)₂ acting as a catalyst. On the basis of these results, it can be concluded that Co^I(Br₈TTFP)(Y)₂ catalyzes the reduction of dioxygen in a process similar to that observed with Col(Br₈TTFP)(Y)₂ but the species for the electrocatalytic reduction may be different from that reported for Col (Br₈TTFP)(Y)₂. Although Co^{ll}(Br₈TTFP)(Y)₂ is a highly elec-

Figure 7. Kouteeky-Levich plots for dioxygen reduction catalyzed by $Co^{10}(Br_8TTFP)(Y)_2$ in 0.05 M H₂SO₄ solution at 10 mV/s scan rate on a glassy carbon disk. The dashed line was calculated for the diffusion-convection limited reduction by two electrons.

tron deficient non-planar porphyrin, such as Co^{II} (Br₈TMpyP), the stable cobaltporphyrin Co^{II} (Br₈TTFP)(Y)₂ adsorbs strongly on the glassy carbon electrode.

In summary, the adsorbed $Co^{II}(Br_8TTFP)(Y)_2$ but not the dissolved cobaltporphyrin reduces initially to $Co^{I}(Br_8TTFP)$ (Y)₂, and the electrocatalytic reduction of dioxygen by $Co^{I}(Br_8TTFP)(Y)_2$ generated from the Le reduction of $Co^{II}(Br_8TTFP)(Y)_2$ results in the formation of HOOH by 2e process.

Acknowledgment. This paper was supported by CNU Research Foundation.

References

- 1. Forshey, P. A.; Kuwana, T. Inorg. Chem. 1981, 19, 693.
- Forshey, P. A.; Kuwana, T.; Kobayashi, N.; Osa, T. Adv. Chem. Ser. 1982, 201, 601.
- Ozer, D.; Harth, R.; Mor, U.; Bettelheim, A. J. Electroanal. Chem. 1989, 266, 109.
- Ozer, D.; Parash, R.; Broitman, F.; Mor, V.; Bettelheim, A. J. Chem. Soc., Faraday Trans. 1 1984, 80, 1139.
- Bettelheim, A.; Ozer, D.; Parash, R. J. Chem. Soc., Faradoy Trans. 1 1983, 79, 1555.
- Creager, S. E.; Raybuck, S. A.; Murray, R. W. J. Am. Chem. Soc. 1986, 108, 4225.
- Creager, S. E.; Murray, R. W. Inorg. Chem. 1987, 26, 2612.
- Perree-Fauvet, M.; Gandemer, A.; Bonvoison, J.; Girerd, J. J.; Bouely-Goester, C.; Bouely, P. *Inorg. Chem.* 1989, 28, 3533.
- Tsang, P. K. S.; Sawyer, D. T. Inorg. Chem. 1990, 29, 2848.
- Sazou, D.; Araullo-McAdams, C.; Han, B. C.; Franzen, M. M.; Kadish, K. M. J. Am. Chem. Soc. 1990, 112, 7879.
- 11. Bettelheim, A.; Chan, R.; Kuwana, T. J. Electroanal.

Chem. 1980, 110, 93.

- 12. Ni, C. L.; Anson, F. C. Inorg. Chem. 1985, 24, 4754.
- Durand, R. R.; Anson, F. C. J. Electroanal. Chem. 1982, 134, 273.
- Shi, C.; Anson, F. C. J. Electroanal. Chem. 1982, 134, 273.
- 15. Shi, C.; Anson, F. C. Inorg, Chem. 1995, 34, 4554.
- 16. Steiger, B.; Anson, F. C. Inorg. Chem. 1994, 33, 5767.
- 17. Steiger, B.; Anson, F. C. Inorg. Chem. 1995, 34, 3355.
- Collman, J. P.: Chang, L. L.: Tyvoll, D. A. *Inorg. Chem.* 1995, 34, 1311.
- Collman, J. P.; Wagenknecht, P. S.: Hutchison, J. E. Angew. Chem., Int. Ed. Engl. 1994, 33, 1537.
- Collman, J. P.: Denisevich. P.: Kanai, Y.: Marrocco, M.: Koval, C.: Anson, F. C. J. Am. Chem. Soc. 1980, 102,

6027.

- Chang, C. K.; Liu, H. Y.; Abdalmuhdi, I. J. Am. Chem. Soc. 1984, 106, 2726.
- Karaman, R.; Jeon, S.; Almarsson, O.; Blasko, A.; Bruice, T. C. J. Am. Chem. Soc. 1992, 114, 4899.
- Jeon, S.; Almarsson, O.; Karaman, R.; Blasko, A.; Bruice, T. C. *Inorg. Chem.* **1993**, *32*, 2562.
- Choi, Y-K.; Jeon, S.; Park, J-K.; Chjo, K-H. Electrochim. Acta 1997, 42, 1287.
- D'Souza, F.; Deviprasad, G. R.; Hsich, Y.-Y. J. Electroanal. Chem. 1996, 411, 167.
- D'Souza, F.; Hsich, Y.-Y.; Deviprasad, R. G. J. Electroanal. Chem. 1997, 426, 17.
- Jeon, S.; Lee, H. K.; Kim, S. M. Bull. Korean Chem. Soc. 1998, 19, 825.